Màster en Meteorologia.
[cat] Per a millorar la gestió dels recursos hídrics és necessari caracteritzar la pluja per tal d'entendre les conseqüències que es poden derivar a nivell hidrològic de qualsevol episodi de pluges. En aquest treball, hem analitzat el comportament pluviomètric dels darrers episodis intensos enregistrats a la ciutat de Barcelona, a partir de la xarxa de pluviòmetres de CLABSA en el període 2000-2011. Per a efectuar l'anàlisi d'aquestos episodis s'han emprat tres metodologies de base matemàtica ben diferenciada i que es poden considerar adaptades a les característiques climàtiques de la zona d'estudi, aquestes són: l'índex ß de Llasat, l'índex IP de Casas i l'índex n de Monjo. A més, com a novetat, també es proposa una evolució d'aquest darrer índex, l'índex s. Amb tots aquestos índex es va fer una comparativa respecte a la informació que ens proporcionà cada episodi, a més, també es va comprovar l'adaptació dels índexs als valors empírics mitjançant un estudi de correlacions R i de MNAE. Els índexs IP i Beta tenen una bona correlació amb la intensitat màxima de cada episodi, mentre que els índexs n i s, descriuen el comportament temporal de la pluja, independentment de la intensitat. Amb això, l'índex que millor es relaciona amb la convectivitat és n_s. Es pot concloure que cadascun dels índexs té diferents utilitats operatives i els seus aspectes a favor i en contra, però que són compatibles per a l'anàlisi d'episodis sota una metodologia que els agrupe adientment.
[eng] In order to manage water resources efficiently we need to characterize the rain events intensity. It helps us to understand hydrological consequences for every rainfall episode. In this work, we analyze a recent heavy rain event behaviour which took place in Barcelona. To accomplish this goal we use the CLABSA database, a set of rain gauges covering the period 2000-2011. To analyze them we use three methodologies whose difference lays in mathematical construction. These are: Llasat ß index, Casas IP index and Monjo n index. In addition, we propose a new n index evolution, called s index. Moreover, we know that these methodologies can be considered suitable to the climate characteristics of this geographical area of work. Information provided by each index and a comparison between indices and in situ data were done by means of statistical analyses (e.g., R and MNAE). Results show that IP and ß index have a good correlation with the maximum intensity of each episode, whereas n and s index describe quite well the rain temporal behaviour, regardless of the intensity. Thus, according to these results the best index for the convective mode of rain is ns. Finally, it can be concluded that each index has different uses and operational aspects with pros and cons. Despite this we think that they are complementary in the analysis of episodes under a methodology that uses them properly.
In order to manage water resources efficiently we need to characterize the intensity of the rain events. It helps us to understand hydrological consequences for every rainfall episode. In this work, we analyze the behavior of a recent heavy rain event which took place in Barcelona. To accomplish this goal we use the CLABSA database, a set of rain gauges covering the period 2000-2011. To analyze them we use three methodologies whose difference lays in mathematical construction. These are: Llasat ß index, Casas IP index and Monjo n index. In addition, we propose a new n index evolution, called s index. Moreover, we know that these methodologies can be considered suitable to the climate characteristics of this geographical area. Information provided by each index and a comparison between indexes and in situ data were done by means of statistical analysis (e.g., R and MNAE). Results show that IP and ß index have a good correlation with the maximum intensity of each episode, whereas n and s index describe quite well the rain temporal behavior, regardless of the intensity. Thus, according to these results the best index for the convective mode of rain is n_s. Finally, it can be concluded that each index has different uses and operational aspects with pros and cons. Nevertheless, we think that they are complementary in the analysis of episodes under a methodology that uses them properly.