Repositori DSpace/Manakin

On balanced CSPs with high treewidth

Mostra el registre parcial de l'element

dc.creator Ansótegui Gil, Carlos José
dc.creator Béjar Torres, Ramón
dc.creator Fernàndez Camon, César
dc.creator Mateu Piñol, Carles
dc.date 2007
dc.date.accessioned 2025-11-03T12:17:13Z
dc.date.available 2025-11-03T12:17:13Z
dc.identifier 9781577353232
dc.identifier http://hdl.handle.net/10459.1/46640
dc.identifier.uri http://fima-docencia.ub.edu:8080/xmlui/handle/123456789/24315
dc.description Tractable cases of the binary CSP are mainly divided in two classes: constraint language restrictions and constraint graph restrictions. To better understand and identify the hardest binary CSPs, in this work we propose methods to increase their hardness by increasing the balance of both the constraint language and the constraint graph. The balance of a constraint is increased by maximizing the number of domain elements with the same number of occurrences. The balance of the graph is defined using the classical definition from graph the- ory. In this sense we present two graph models; a first graph model that increases the balance of a graph maximizing the number of vertices with the same degree, and a second one that additionally increases the girth of the graph, because a high girth implies a high treewidth, an important parameter for binary CSPs hardness. Our results show that our more balanced graph models and constraints result in harder instances when compared to typical random binary CSP instances, by several orders of magnitude. Also we detect, at least for sparse constraint graphs, a higher treewidth for our graph models.
dc.language eng
dc.publisher Association for the Advancement of Artificial Intelligence
dc.relation Versió postprint del document publicat a: http://www.aaai.org
dc.relation Proceedings of the twenty-second National Conference on Artificial Intelligence, 2007, p. 161-166
dc.rights (c) Association for the Advancement of Artificial Intelligence, 2007
dc.rights info:eu-repo/semantics/openAccess
dc.subject Intel·ligència artificial
dc.subject CSP (Llenguatge de programació)
dc.title On balanced CSPs with high treewidth
dc.type article
dc.type acceptedVersion


Fitxers en aquest element

Fitxers Grandària Format Visualització

No hi ha fitxers associats a aquest element.

Aquest element apareix en la col·lecció o col·leccions següent(s)

Mostra el registre parcial de l'element

Cerca a DSpace


Cerca avançada

Visualitza

El meu compte