Repositorio Dspace

Hyperspectral imaging for the classification of individual cereal kernels according to fungal and mycotoxins contamination: A review

Mostrar el registro sencillo del ítem

dc.creator Femenias, Antoni
dc.creator Gatius Cortiella, Ferran
dc.creator Ramos Girona, Antonio J.
dc.creator Teixido-Orries, Irene
dc.creator Marín Sillué, Sònia
dc.date 2022
dc.date.accessioned 2025-11-03T12:15:31Z
dc.date.available 2025-11-03T12:15:31Z
dc.identifier https://doi.org/10.1016/j.foodres.2022.111102
dc.identifier 0963-9969
dc.identifier http://hdl.handle.net/10459.1/83276
dc.identifier.uri http://fima-docencia.ub.edu:8080/xmlui/handle/123456789/24140
dc.description One of the most common concerns in the cereal industry is the presence of fungi and their associated mycotoxins. Hyperspectral Imaging (HSI) has been proposed recently as one of the most potent tools to manage fungal associated contamination. The introduction of a spatial dimension to the spectral analysis allows the selection of the specific regions of the sample for further screening. Single kernel analysis would enable the discrimination of the highly contaminated kernels to establish a mitigation strategy, overcoming the contamination heterogeneity of cereal batches. This document is a detailed review of the HSI recently published studies that aimed to discriminate fungi and mycotoxin contaminated single cereal kernels. The most relevant findings showed that fungal infection and mycotoxins levels discrimination accuracies were above 90% and 80%, respectively. The results indicate that NIR-HSI is suitable for the detection of fungal-related contamination in single kernels and it has potential to be applied at food industry stages.
dc.description This work was supported by Project AGL2017-87755-R funded by MCIN/ AEI /10.13039/501100011033/ FEDER ?Una manera de hacer Europa? and project PID2020-114836RB-I00 funded by MCIN/ AEI /10.13039/501100011033. The authors are grateful to the University of Lleida (predoctoral grant).
dc.language eng
dc.publisher Elsevier
dc.relation info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2020-114836RB-I00/ES/ESTRATEGIAS DE MITIGACION DE LA CONTAMINACION POR DEOXINIVALENOL Y FUMONISINAS EN ALIMENTOS A BASE DE MAIZ Y AVENA/
dc.relation info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/AGL2017-87755-R/ES/TECNICAS DE SELECCION Y PROCESADO DE CEREALES, Y SU IMPACTO EN LA CONTAMINACION POR DEOXINIVALENOL EN ALIMENTOS INFANTILES/Sa
dc.relation Reproducció del document publicat a https://doi.org/10.1016/j.foodres.2022.111102
dc.relation Food Research International, 2022, vol. 155, núm. 111102, p. 1-12
dc.rights cc-by (c) Femenias et. al., 2022
dc.rights info:eu-repo/semantics/openAccess
dc.rights http://creativecommons.org/licenses/by/4.0/
dc.subject Cereal sorting
dc.subject Mycotoxins
dc.subject Fungal infections
dc.subject Hyperspectral imaging
dc.subject Single-kernel analysis
dc.subject Fongs fitopatògens
dc.subject Fongs en l'agricultura
dc.title Hyperspectral imaging for the classification of individual cereal kernels according to fungal and mycotoxins contamination: A review
dc.type info:eu-repo/semantics/article
dc.type info:eu-repo/semantics/publishedVersion


Ficheros en el ítem

Ficheros Tamaño Formato Ver

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Buscar en DSpace


Búsqueda avanzada

Listar

Mi cuenta