Repositori DSpace/Manakin

Definition of agronomic circular economy metrics and use for assessment for a nanofertilizer case study

Mostra el registre parcial de l'element

dc.creator Escribà i Gelonch, Marc
dc.creator Butler, Gregory Dean
dc.creator Goswami, Arunava
dc.creator Tran, Nam Nghiep
dc.creator Hessel, Volker
dc.date 2023-03-01
dc.date.accessioned 2025-11-03T12:14:46Z
dc.date.available 2025-11-03T12:14:46Z
dc.identifier https://doi.org/10.1016/j.plaphy.2023.02.042
dc.identifier 09819428
dc.identifier 0981-9428
dc.identifier https://hdl.handle.net/10459.1/463193
dc.identifier.uri http://fima-docencia.ub.edu:8080/xmlui/handle/123456789/23831
dc.description Circular economy has become global priority, and fertigation make large contribution. Modern circular methodologies base their definitions, besides on waste minimisation and recovery, on the product usage U and lifetime L. We have modified a commonly used equation for the mass circularity indicator (MCI) to permit MCI determination for agricultural cultivation. We defined U as intensity for diverse investigated parameters of plant growth and L as the bioavailability period. In this way, we compute circularity metrics for the plantgrowth performance when exposed to three nanofertilizers and one biostimulant, as compared to no-use of micronutrients (control 1), and micronutrients supplied via conventional fertilizers (control 2). We determined an MCI of 0.839 for best nanofertilizer performance (1.000 denotes full circularity), while the MCI of conventional fertilizer was 0.364. Normalised to control 1, U was determined as 1.196, 1.121 and 1.149 for manganese, copper and iron-based nanofertilizers, respectively, while U was 1.709, 1.432, 1.424 and 1.259 for manganese, copper, iron nanofertilizers and gold biostimulant when normalised to control 2, respectively. Based on the learning of the plant growth experiments, a tailored process design is proposed for the use of nanoparticles with pre-conditioning, post-processing and recycling steps. A life cycle assessment shows that the additional use of pumps for this process design does not increase energy costs, while preserving environmental advantages related to the lower water usage of the nanofertilizers. Moreover, the impact of the losses of conventional fertilisers by missing absorption of plant roots, which is presumed to be lower for the nanofertilizers.
dc.description Dr. Marc Escribà-Gelonch acknowledges the funding received from the EU-Horizon 2020 Beatriu de Pinós programme (Government of Catalonia), framed in Horizon 2020 research and innovation under grant agreement No. 801370.
dc.language eng
dc.publisher Elsevier
dc.relation Reproducció del document publicat a http://doi.org/10.1016/j.plaphy.2023.02.042
dc.relation Plant Physiology and Biochemistry, 2023, vol. 196, p. 917
dc.relation Plant Physiology and Biochemistry
dc.relation info:eu-repo/grantAgreement/EC/H2020/801370/EU/BP3
dc.rights by-nc-nd (c) Escribà-Gelonch et al., 2023
dc.rights Attribution-NonCommercial-NoDerivatives 4.0 International
dc.rights info:eu-repo/semantics/openAccess
dc.rights http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject Circular economy
dc.subject Utility factor
dc.subject Biological cycles
dc.subject Nanofertilizers
dc.subject Life cycle assessment
dc.title Definition of agronomic circular economy metrics and use for assessment for a nanofertilizer case study
dc.type info:eu-repo/semantics/article
dc.type info:eu-repo/semantics/publishedVersion


Fitxers en aquest element

Fitxers Grandària Format Visualització

No hi ha fitxers associats a aquest element.

Aquest element apareix en la col·lecció o col·leccions següent(s)

Mostra el registre parcial de l'element

Cerca a DSpace


Cerca avançada

Visualitza

El meu compte