DSpace Repository

Development and validation of a sample entropy-based method to identify complex patient-ventilator interactions during mechanical ventilation

Show simple item record

dc.creator Sarlabous Uranga, Leonardo
dc.creator Aquino Esperanza, Jose
dc.creator Magrans, Rudys
dc.creator de Haro, Candelaria
dc.creator López-Aguilar, Josefina
dc.creator Subirà, Carles
dc.creator Batlle, Montserrat
dc.creator Rué i Monné, Montserrat
dc.creator Gomà Fernández, Gemma
dc.creator Ochagavía, Ana
dc.creator Fernández, Rafael
dc.creator Blanch, Lluís
dc.date 2020
dc.date.accessioned 2025-11-03T12:14:34Z
dc.date.available 2025-11-03T12:14:34Z
dc.identifier https://doi.org/10.1038/s41598-020-70814-4
dc.identifier 2045-2322
dc.identifier http://hdl.handle.net/10459.1/83271
dc.identifier.uri http://fima-docencia.ub.edu:8080/xmlui/handle/123456789/23764
dc.description Patient-ventilator asynchronies can be detected by close monitoring of ventilator screens by clinicians or through automated algorithms. However, detecting complex patient-ventilator interactions (CP-VI), consisting of changes in the respiratory rate and/or clusters of asynchronies, is a challenge. Sample Entropy (SE) of airway flow (SE-Flow) and airway pressure (SE-Paw) waveforms obtained from 27 critically ill patients was used to develop and validate an automated algorithm for detecting CP-VI. The algorithm’s performance was compared versus the gold standard (the ventilator’s waveform recordings for CP-VI were scored visually by three experts; Fleiss’ kappa = 0.90 (0.87–0.93)). A repeated holdout cross-validation procedure using the Matthews correlation coefficient (MCC) as a measure of effectiveness was used for optimization of different combinations of SE settings (embedding dimension, m, and tolerance value, r), derived SE features (mean and maximum values), and the thresholds of change (Th) from patient’s own baseline SE value. The most accurate results were obtained using the maximum values of SE-Flow (m = 2, r = 0.2, Th = 25%) and SE-Paw (m = 4, r = 0.2, Th = 30%) which report MCCs of 0.85 (0.78–0.86) and 0.78 (0.78–0.85), and accuracies of 0.93 (0.89–0.93) and 0.89 (0.89–0.93), respectively. This approach promises an improvement in the accurate detection of CP-VI, and future study of their clinical implications.
dc.description This work was funded by projects PI16/01606, integrated in the Plan Nacional de R+D+I and co-funded by the ISCIII- Subdirección General de Evaluación y el Fondo Europeo de Desarrollo Regional (FEDER). RTC-2017-6193-1 (AEI/FEDER UE). CIBER Enfermedades Respiratorias, and Fundació Parc Taulí.
dc.language eng
dc.publisher Scientific Reports
dc.relation Reproducció del document publicat a: https://doi.org/10.1038/s41598-020-70814-4
dc.relation Scientific Reports, 2020 , vol. 10, p. 1-12
dc.rights cc-by (c) The Author 2020
dc.rights info:eu-repo/semantics/openAccess
dc.rights http://creativecommons.org/licenses/by/4.0/
dc.subject Enginyeria biomèdica
dc.subject Marcadors bioquímics
dc.subject Bases de dades
dc.subject Aprenentatge automàtic
dc.subject Estadística
dc.subject Biomedical engineering
dc.subject Biochemical markers
dc.subject Database
dc.subject Machine learning
dc.subject Statistics
dc.title Development and validation of a sample entropy-based method to identify complex patient-ventilator interactions during mechanical ventilation
dc.type info:eu-repo/semantics/article
dc.type info:eu-repo/semantics/publishedVersion


Files in this item

Files Size Format View

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record

Search DSpace


Advanced Search

Browse

My Account