Repositori DSpace/Manakin

Complex trees and their families of connected self-similar sets

Mostra el registre parcial de l'element

dc.contributor Jarque i Ribera, Xavier
dc.contributor Fagella Rabionet, Núria
dc.creator Espigulé Pons, Bernat
dc.date 2019-02-28T11:57:59Z
dc.date 2019-02-28T11:57:59Z
dc.date 2018-06-28
dc.date.accessioned 2024-12-16T10:27:21Z
dc.date.available 2024-12-16T10:27:21Z
dc.identifier http://hdl.handle.net/2445/129385
dc.identifier.uri http://fima-docencia.ub.edu:8080/xmlui/handle/123456789/22287
dc.description Treballs finals del Màster en Matemàtica Avançada, Facultat de matemàtiques, Universitat de Barcelona, Any: 2018, Director: Xavier Jarque i Ribera i Núria Fagella Rabionet
dc.description [en] The theory of complex trees is introduced as a new approach to study a broad class of self-similar sets which includes Cantor sets, Koch curves, Lévy curves, Sierpiński gaskets, Rauzy fractals, and fractal dendrites. We note a fundamental dichotomy for n-ary complex trees that allows us to study topological changes in regions $\mathcal{R}$ where one-parameter families of connected self-similar sets are defined. Moreover, we show how to obtain these families from systems of equations encoded by tip-to-tip equivalence relations. As far as we know, these families and the sets $M , M_{0}$, and $\mathcal{K}$ that we introduce to study $\mathcal{R}$ are new. We provide a theorem, and a necessary condition, for certifying if a given tipset (self-similar set associated to a complex tree) is a fractal dendrite. We highlight a special class of totally connected tipsets that we call root-connected. And we provide a pair of theorems related to them. For a given one-parameter family we also define the set of root-connected trees $M_{0}$ which presents an asymptotic similarity between its boundary and their associated tipsets. By adapting the notion of post-critically finite self-similar set (p.c.f. for short), the open set condition, and the Hausdorff dimension, we arrive to an upper bound for the existence of p.c.f. trees in a given one-parameter family. We also provide a theorem that allows us to discard non-p.c.f. trees just by looking at some local properties. In relation to this theorem, we set a conjecture of an interesting observation that has been consistent in numerous computational experiments. The space of one-parameter families of tipset-connected complex trees has just begun to be explored. For the family $TS(z) := T \{z, 1/2, 1/4z\}$ we prove that there is a pair of regions contained in the set $\mathcal{K}$ with a piece-wise smooth boundary. We show that this piece-wise smooth boundary is a rather exceptional case by considering a closely related family, $T S(z) := T {z, -1/2, 1/4z}$. Finally we indicate how the general framework works for one-parameter families with non-fixed mirror-symmetric trees.
dc.format 87 p.
dc.format application/pdf
dc.language eng
dc.rights cc-by-nc-nd (c) Bernat Espigulé Pons, 2018
dc.rights http://creativecommons.org/licenses/by-nc-nd/3.0/es/
dc.rights info:eu-repo/semantics/openAccess
dc.source Màster Oficial - Matemàtica Avançada
dc.subject Sistemes dinàmics complexos
dc.subject Fractals
dc.subject Treballs de fi de màster
dc.subject Polinomis
dc.subject Complex dynamical systems
dc.subject Fractales
dc.subject Master's theses
dc.subject Polynomials
dc.title Complex trees and their families of connected self-similar sets
dc.type info:eu-repo/semantics/masterThesis


Fitxers en aquest element

Fitxers Grandària Format Visualització

No hi ha fitxers associats a aquest element.

Aquest element apareix en la col·lecció o col·leccions següent(s)

Mostra el registre parcial de l'element

Cerca a DSpace


Cerca avançada

Visualitza

El meu compte