Repositorio Dspace

Kinematic reduction of reaction-diffusion fronts with multiplicative noise. Derivation of stochastic sharp-interface equations

Mostrar el registro sencillo del ítem

dc.creator Rocco, Andrea
dc.creator Ramírez Piscina, Laureano
dc.creator Casademunt i Viader, Jaume
dc.date 2011-07-07T12:50:58Z
dc.date 2011-07-07T12:50:58Z
dc.date 2002
dc.date.accessioned 2024-12-16T10:27:18Z
dc.date.available 2024-12-16T10:27:18Z
dc.identifier 1539-3755
dc.identifier http://hdl.handle.net/2445/18705
dc.identifier 196945
dc.identifier.uri http://fima-docencia.ub.edu:8080/xmlui/handle/123456789/22234
dc.description We study the dynamics of generic reaction-diffusion fronts, including pulses and chemical waves, in the presence of multiplicative noise. We discuss the connection between the reaction-diffusion Langevin-like field equations and the kinematic (eikonal) description in terms of a stochastic moving-boundary or sharp-interface approximation. We find that the effective noise is additive and we relate its strength to the noise parameters in the original field equations, to first order in noise strength, but including a partial resummation to all orders which captures the singular dependence on the microscopic cutoff associated with the spatial correlation of the noise. This dependence is essential for a quantitative and qualitative understanding of fluctuating fronts, affecting both scaling properties and nonuniversal quantities. Our results predict phenomena such as the shift of the transition point between the pushed and pulled regimes of front propagation, in terms of the noise parameters, and the corresponding transition to a non-Kardar-Parisi-Zhang universality class. We assess the quantitative validity of the results in several examples including equilibrium fluctuations and kinetic roughening. We also predict and observe a noise-induced pushed-pulled transition. The analytical predictions are successfully tested against rigorous results and show excellent agreement with numerical simulations of reaction-diffusion field equations with multiplicative noise.
dc.format 14 p.
dc.format application/pdf
dc.language eng
dc.publisher The American Physical Society
dc.relation Reproducció del document publicat a: http://dx.doi.org/10.1103/PhysRevE.65.056116
dc.relation Physical Review E, 2002, vol. 65, núm. 5, p. 056116
dc.relation http://dx.doi.org/10.1103/PhysRevE.65.056116
dc.rights (c) The American Physical Society, 2002
dc.rights info:eu-repo/semantics/openAccess
dc.source Articles publicats en revistes (Física Quàntica i Astrofísica)
dc.subject Física estadística
dc.subject Termodinàmica
dc.subject Sistemes dinàmics diferenciables
dc.subject Dinàmica de fluids
dc.subject Statistical physics
dc.subject Thermodynamics
dc.subject Differentiable dynamical systems
dc.subject Fluid dynamics
dc.title Kinematic reduction of reaction-diffusion fronts with multiplicative noise. Derivation of stochastic sharp-interface equations
dc.type info:eu-repo/semantics/article
dc.type info:eu-repo/semantics/publishedVersion


Ficheros en el ítem

Ficheros Tamaño Formato Ver

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Buscar en DSpace


Búsqueda avanzada

Listar

Mi cuenta