Alvarez Lacalle, Enrique; Pauné i Xuriguera, Eduard; Casademunt i Viader, Jaume; Ortín, Jordi, 1959-
Descripció:
We present a weakly nonlinear analysis of the interface dynamics in a radial Hele-Shaw cell driven by both injection and rotation. We extend the systematic expansion introduced in [E. Alvarez-Lacalle et al., Phys. Rev. E 64, 016302 (2001)] to the radial geometry, and compute explicitly the first nonlinear contributions. We also find the necessary and sufficient condition for the uniform convergence of the nonlinear expansion. Within this region of convergence, the analytical predictions at low orders are compared satisfactorily to exact solutions and numerical integration of the problem. This is particularly remarkable in configurations (with no counterpart in the channel geometry) for which the interplay between injection and rotation allows that condition to be satisfied at all times. In the case of the purely centrifugal forcing we demonstrate that nonlinear couplings make the interface more unstable for lower viscosity contrast between the fluids.