DSpace Repository

El fibrado de Hopf en homotopía estable

Show simple item record

dc.contributor Casacuberta, Carles
dc.creator Muñoz Pereiro, Luis
dc.date 2019-01-18T09:59:07Z
dc.date 2019-01-18T09:59:07Z
dc.date 2018-06-27
dc.date.accessioned 2024-12-16T10:27:12Z
dc.date.available 2024-12-16T10:27:12Z
dc.identifier http://hdl.handle.net/2445/127418
dc.identifier.uri http://fima-docencia.ub.edu:8080/xmlui/handle/123456789/22064
dc.description Treballs Finals de Grau de Matemàtiques, Facultat de Matemàtiques, Universitat de Barcelona, Any: 2018, Director: Carles Casacuberta
dc.description [en] In this work we study the Hopf map from the 3-sphere $S^{3} $ to the 2-sphere $S^{2}$. We review some properties of the higher homotopy groups of spaces and prove that the Hopf map is a generator of $\pi_{3} (S^{2})$. As an introduction to stable homotopy theory, we prove the Freudenthal suspension theorem for the spheres and explain why the first stable homotopy group $\pi^{s}_{1}$ is isomorphic to $\mathbb{Z}/2\mathbb{Z}$. In order to prove it we use the Pontryagin-Thom construction, a result that relates the homotopy groups of spheres with framed cobordism classes of framed manifolds. Our goal is to understand geometrically why the class represented by the Hopf map has infinite order in $\pi_{3}(S^{2})$ but its suspensions have order 2 in $\pi_{n+1}(S^{n})$ for $n > 2$.
dc.format 34 p.
dc.format application/pdf
dc.language spa
dc.rights cc-by-nc-nd (c) Luis Muñoz Pereiro, 2018
dc.rights http://creativecommons.org/licenses/by-nc-nd/3.0/es/
dc.rights info:eu-repo/semantics/openAccess
dc.source Treballs Finals de Grau (TFG) - Matemàtiques
dc.subject Feixos fibrats (Matemàtica)
dc.subject Grups d'homotopia
dc.subject Varietats diferenciables
dc.subject Treballs de fi de grau
dc.subject Fiber bundles (Mathematics)
dc.subject Homotopy groups
dc.subject Differentiable manifolds
dc.subject Bachelor's theses
dc.title El fibrado de Hopf en homotopía estable
dc.type info:eu-repo/semantics/bachelorThesis


Files in this item

Files Size Format View

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record

Search DSpace


Advanced Search

Browse

My Account