dc.contributor |
Zarzuela, Santiago |
|
dc.creator |
Maristany Sala, Pau |
|
dc.date |
2019-01-17T08:29:11Z |
|
dc.date |
2019-01-17T08:29:11Z |
|
dc.date |
2018-06-27 |
|
dc.date.accessioned |
2024-12-16T10:27:12Z |
|
dc.date.available |
2024-12-16T10:27:12Z |
|
dc.identifier |
http://hdl.handle.net/2445/127363 |
|
dc.identifier.uri |
http://fima-docencia.ub.edu:8080/xmlui/handle/123456789/22055 |
|
dc.description |
Treballs Finals de Grau de Matemàtiques, Facultat de Matemàtiques, Universitat de Barcelona, Any: 2018, Director: Santiago Zarzuela |
|
dc.description |
[en] Let $a_{1},..., a_{n}$ be positive integers, find the largest natural number that is not representable as a non-negative combination of $a_{1},..., a_{n}$. This problem is called Frobenius Problem. The project consists on a exposition of some of the most important results about this problem. We will study it using numerical semigroups and Hilbert series. We will prove that Frobenius Problem is $\mathcal{NP}$-hard and also that there is no polynomial formula for the general case. |
|
dc.format |
61 p. |
|
dc.format |
application/pdf |
|
dc.language |
cat |
|
dc.rights |
cc-by-nc-nd (c) Pau Maristany Sala, 2018 |
|
dc.rights |
http://creativecommons.org/licenses/by-nc-nd/3.0/es/ |
|
dc.rights |
info:eu-repo/semantics/openAccess |
|
dc.source |
Treballs Finals de Grau (TFG) - Matemàtiques |
|
dc.subject |
Nombres naturals |
|
dc.subject |
Anàlisi diofàntica |
|
dc.subject |
Semigrups |
|
dc.subject |
Àlgebra commutativa |
|
dc.subject |
Treballs de fi de grau |
|
dc.subject |
Natural numbers |
|
dc.subject |
Diophantine analysis |
|
dc.subject |
Semigroups |
|
dc.subject |
Commutative algebra |
|
dc.subject |
Bachelor's theses |
|
dc.title |
El nombre de Frobenius |
|
dc.type |
info:eu-repo/semantics/bachelorThesis |
|