Mostra el registre parcial de l'element

dc.contributor Currás Bosch, Carlos
dc.creator Giral de las Heras, Adrián
dc.date 2018-12-14T09:19:35Z
dc.date 2018-12-14T09:19:35Z
dc.date 2018-06-27
dc.date.accessioned 2024-12-16T10:27:10Z
dc.date.available 2024-12-16T10:27:10Z
dc.identifier http://hdl.handle.net/2445/126964
dc.identifier.uri http://fima-docencia.ub.edu:8080/xmlui/handle/123456789/22007
dc.description Treballs Finals de Grau de Matemàtiques, Facultat de Matemàtiques, Universitat de Barcelona, Any: 2018, Director: Carlos Currás Bosch
dc.description [en] The main goal of this work is to construct the space-time, a topological space used for physical modelling. In 1905, Albert Einstein published a revolutionary article that changed the perception of space and time. He proposed that there is a maximum speed that anything can travel, the speed of light, and its value is constant for any observer. This caused interest to many scientists to study a new type of model based on Einstein’s ideas. The phenomena happening on a velocity close to the speed of light contradict the theory of Newton’s mechanics, which uses Euclidean spaces for modelling. The first space proposed to model these effects is called Minkowski space-time, which is R 4 with a non Euclidean metric (this will be explained in detail in this work). The theory that studies physical phenomena based on Einstein’s ideas, and modelled in the Minkowski space-time, is called the Theory of special relativity. However, this theory was not enough. The Minkowski space-time can only describe physical phenomena when there is no gravity involved. It took 10 years for Einstein to create the theory of general relativity, which is compatible with Newton’s theory of gravitation. The intuitive idea is that, in presence of masses, the space-time is no longer "flat" (R 4 has null curvature) and it becomes a "curved" topological space. Hence, in order to construct the space-time, we shall introduce the ba- sics of differential geometry, which studies the concepts of differential calculus applied to curved spaces. Such spaces are called differentiable manifolds. Concepts as the curvature and the metric are defined using tensor algebra, hence, we will also study the basics of tensor calculus and algebra.
dc.format 51 p.
dc.format application/pdf
dc.language eng
dc.rights cc-by-nc-nd (c) Adrián Giral de las Heras, 2018
dc.rights http://creativecommons.org/licenses/by-nc-nd/3.0/es/
dc.rights info:eu-repo/semantics/openAccess
dc.source Treballs Finals de Grau (TFG) - Matemàtiques
dc.subject Espais topològics
dc.subject Relativitat especial (Física)
dc.subject Relativitat general (Física)
dc.subject Varietats diferenciables
dc.subject Àlgebra lineal
dc.subject Treballs de fi de grau
dc.subject Topological spaces
dc.subject Special relativity (Physics)
dc.subject General relativity (Physics)
dc.subject Differentiable manifolds
dc.subject Linear algebra
dc.subject Bachelor's theses
dc.title Constructing the space-time
dc.type info:eu-repo/semantics/bachelorThesis


Fitxers en aquest element

Fitxers Grandària Format Visualització

No hi ha fitxers associats a aquest element.

Aquest element apareix en la col·lecció o col·leccions següent(s)

Mostra el registre parcial de l'element

Cerca a DSpace


Cerca avançada

Visualitza

El meu compte