dc.contributor |
Tatjer i Montaña, Joan Carles |
|
dc.creator |
Garcı́a Fuentes, Juan |
|
dc.date |
2018-11-02T10:52:04Z |
|
dc.date |
2018-11-02T10:52:04Z |
|
dc.date |
2018-06-27 |
|
dc.date.accessioned |
2024-12-16T10:27:01Z |
|
dc.date.available |
2024-12-16T10:27:01Z |
|
dc.identifier |
http://hdl.handle.net/2445/125804 |
|
dc.identifier.uri |
http://fima-docencia.ub.edu:8080/xmlui/handle/123456789/21740 |
|
dc.description |
Treballs Finals de Grau de Matemàtiques, Facultat de Matemàtiques, Universitat de Barcelona, Any: 2018, Director: Joan Carles Tatjer i Montaña |
|
dc.description |
[en] Atractting periodic orbits are a very important tool in the study of the dynamic of one dimensional maps, as orbits in maps that have them are more predictable and maps without them can exhibit a chaotic behaviour. We will prove that exist a positive Lebesgue measure set of parameters such that the logistic fuction $\lim_{a} (x) = ax(1 - x)$ doesn’t have atracting periodic orbits using the results of Benedicks and Carleson. |
|
dc.format |
53 p. |
|
dc.format |
application/pdf |
|
dc.language |
cat |
|
dc.rights |
cc-by-nc-nd (c) Juan Garcı́a Fuentes, 2018 |
|
dc.rights |
http://creativecommons.org/licenses/by-nc-nd/3.0/es/ |
|
dc.rights |
info:eu-repo/semantics/openAccess |
|
dc.source |
Treballs Finals de Grau (TFG) - Matemàtiques |
|
dc.subject |
Òrbites |
|
dc.subject |
Sistemes dinàmics hiperbòlics |
|
dc.subject |
Teoria ergòdica |
|
dc.subject |
Caos (Teoria de sistemes) |
|
dc.subject |
Treballs de fi de grau |
|
dc.subject |
Orbits |
|
dc.subject |
Hyperbolic dynamical systems |
|
dc.subject |
Ergodic theory |
|
dc.subject |
Chaotic behavior in systems |
|
dc.subject |
Bachelor's theses |
|
dc.title |
Abundància de comportament aperiòdic en l'aplicació logística |
|
dc.type |
info:eu-repo/semantics/bachelorThesis |
|