Mostra el registre parcial de l'element
dc.contributor | Tatjer i Montaña, Joan Carles | |
dc.creator | Garcı́a Fuentes, Juan | |
dc.date | 2018-11-02T10:52:04Z | |
dc.date | 2018-11-02T10:52:04Z | |
dc.date | 2018-06-27 | |
dc.date.accessioned | 2024-12-16T10:27:01Z | |
dc.date.available | 2024-12-16T10:27:01Z | |
dc.identifier | http://hdl.handle.net/2445/125804 | |
dc.identifier.uri | http://fima-docencia.ub.edu:8080/xmlui/handle/123456789/21740 | |
dc.description | Treballs Finals de Grau de Matemàtiques, Facultat de Matemàtiques, Universitat de Barcelona, Any: 2018, Director: Joan Carles Tatjer i Montaña | |
dc.description | [en] Atractting periodic orbits are a very important tool in the study of the dynamic of one dimensional maps, as orbits in maps that have them are more predictable and maps without them can exhibit a chaotic behaviour. We will prove that exist a positive Lebesgue measure set of parameters such that the logistic fuction $\lim_{a} (x) = ax(1 - x)$ doesn’t have atracting periodic orbits using the results of Benedicks and Carleson. | |
dc.format | 53 p. | |
dc.format | application/pdf | |
dc.language | cat | |
dc.rights | cc-by-nc-nd (c) Juan Garcı́a Fuentes, 2018 | |
dc.rights | http://creativecommons.org/licenses/by-nc-nd/3.0/es/ | |
dc.rights | info:eu-repo/semantics/openAccess | |
dc.source | Treballs Finals de Grau (TFG) - Matemàtiques | |
dc.subject | Òrbites | |
dc.subject | Sistemes dinàmics hiperbòlics | |
dc.subject | Teoria ergòdica | |
dc.subject | Caos (Teoria de sistemes) | |
dc.subject | Treballs de fi de grau | |
dc.subject | Orbits | |
dc.subject | Hyperbolic dynamical systems | |
dc.subject | Ergodic theory | |
dc.subject | Chaotic behavior in systems | |
dc.subject | Bachelor's theses | |
dc.title | Abundància de comportament aperiòdic en l'aplicació logística | |
dc.type | info:eu-repo/semantics/bachelorThesis |
Fitxers | Grandària | Format | Visualització |
---|---|---|---|
No hi ha fitxers associats a aquest element. |