Show simple item record

dc.contributor D'Andrea, Carlos, 1973-
dc.creator Garcés de Marcilla Escubedo, Nil
dc.date 2018-11-02T09:35:34Z
dc.date 2018-11-02T09:35:34Z
dc.date 2018-06-27
dc.date.accessioned 2024-12-16T10:27:01Z
dc.date.available 2024-12-16T10:27:01Z
dc.identifier http://hdl.handle.net/2445/125803
dc.identifier.uri http://fima-docencia.ub.edu:8080/xmlui/handle/123456789/21739
dc.description Treballs Finals de Grau de Matemàtiques, Facultat de Matemàtiques, Universitat de Barcelona, Any: 2018, Director: Carlos D'Andrea
dc.description [en] The Quillen-Suslin theorem is usually stated as "Let $P$ be a finitely generated projective module over $k [ x_{1},...,x_{n}]$ . Then P is free". Before being proven independently and in its full generality by Quillen and Suslin in 1976, this question was usually referred to as the "Serre’s Conjecture", and stood as one of the most relevant open problems in algebra and affine algebraic geometry for twenty years. In this memoir we provide in detail all the algebraic tools needed to have a good understanding of the basic mathematics surrounding this theorem and its more elementary proof by Vaserstein, as well as some algorithms related to it.
dc.format 62 p.
dc.format application/pdf
dc.language eng
dc.rights cc-by-nc-nd (c) Nil Garcés de Marcilla Escubedo, 2018
dc.rights http://creativecommons.org/licenses/by-nc-nd/3.0/es/
dc.rights info:eu-repo/semantics/openAccess
dc.source Treballs Finals de Grau (TFG) - Matemàtiques
dc.subject Mòduls projectius (Àlgebra)
dc.subject Àlgebra commutativa
dc.subject Algorismes computacionals
dc.subject Treballs de fi de grau
dc.subject Commutative algebra
dc.subject Computer algorithms
dc.subject Projective modules (Algebra)
dc.subject Bachelor's theses
dc.title The Quillen-Suslin theorem
dc.type info:eu-repo/semantics/bachelorThesis


Files in this item

Files Size Format View

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record

Search DSpace


Advanced Search

Browse

My Account