Mostra el registre parcial de l'element
dc.contributor | Mundet i Riera, Ignasi | |
dc.creator | Esquirol Esteve, Josep | |
dc.date | 2018-10-30T11:34:16Z | |
dc.date | 2018-10-30T11:34:16Z | |
dc.date | 2018-06-26 | |
dc.date.accessioned | 2024-12-16T10:26:59Z | |
dc.date.available | 2024-12-16T10:26:59Z | |
dc.identifier | http://hdl.handle.net/2445/125730 | |
dc.identifier.uri | http://fima-docencia.ub.edu:8080/xmlui/handle/123456789/21710 | |
dc.description | Treballs Finals de Grau de Matemàtiques, Facultat de Matemàtiques, Universitat de Barcelona, Any: 2018, Director: Ignasi Mundet i Riera | |
dc.description | [en] The goal of this work is to prove a non existence theorem of non-trivial $S^{1}$ actions on a certain kind of smooth manifolds. More specifically, let $T$ be the $n$-dimensional torus and $M$ a smooth conected, closed (i.e. compact and without bondary) and orientable manifold of dimension $n$ such that $\chi(T \# M) \neq 0$. Then there are no non-trivial $S^{1}$ actions on $T \neq M$. Before proving this statement, some smooth manifold and Lie group theory will be developed: the proof of the Sard and the Poincaré-Hopf theorems stand out in this part. | |
dc.format | 51 p. | |
dc.format | application/pdf | |
dc.language | cat | |
dc.rights | cc-by-nc-nd (c) Josep Esquirol Esteve, 2018 | |
dc.rights | http://creativecommons.org/licenses/by-nc-nd/3.0/es/ | |
dc.rights | info:eu-repo/semantics/openAccess | |
dc.source | Treballs Finals de Grau (TFG) - Matemàtiques | |
dc.subject | Grups de Lie | |
dc.subject | Grups de transformacions | |
dc.subject | Espais topològics | |
dc.subject | Varietats diferenciables | |
dc.subject | Treballs de fi de grau | |
dc.subject | Lie groups | |
dc.subject | Transformation groups | |
dc.subject | Topological spaces | |
dc.subject | Differentiable manifolds | |
dc.subject | Bachelor's theses | |
dc.title | Varietats sense accions de $S^{1}$ no trivials | |
dc.type | info:eu-repo/semantics/bachelorThesis |
Fitxers | Grandària | Format | Visualització |
---|---|---|---|
No hi ha fitxers associats a aquest element. |