dc.contributor |
Mundet i Riera, Ignasi |
|
dc.creator |
Esquirol Esteve, Josep |
|
dc.date |
2018-10-30T11:34:16Z |
|
dc.date |
2018-10-30T11:34:16Z |
|
dc.date |
2018-06-26 |
|
dc.date.accessioned |
2024-12-16T10:26:59Z |
|
dc.date.available |
2024-12-16T10:26:59Z |
|
dc.identifier |
http://hdl.handle.net/2445/125730 |
|
dc.identifier.uri |
http://fima-docencia.ub.edu:8080/xmlui/handle/123456789/21710 |
|
dc.description |
Treballs Finals de Grau de Matemàtiques, Facultat de Matemàtiques, Universitat de Barcelona, Any: 2018, Director: Ignasi Mundet i Riera |
|
dc.description |
[en] The goal of this work is to prove a non existence theorem of non-trivial $S^{1}$ actions on a certain kind of smooth manifolds. More specifically, let $T$ be the $n$-dimensional torus and $M$ a smooth conected, closed (i.e. compact and without bondary) and orientable manifold of dimension $n$ such that $\chi(T \# M) \neq 0$. Then there are no non-trivial $S^{1}$ actions on $T \neq M$.
Before proving this statement, some smooth manifold and Lie group theory will be developed: the proof of the Sard and the Poincaré-Hopf theorems stand out in this part. |
|
dc.format |
51 p. |
|
dc.format |
application/pdf |
|
dc.language |
cat |
|
dc.rights |
cc-by-nc-nd (c) Josep Esquirol Esteve, 2018 |
|
dc.rights |
http://creativecommons.org/licenses/by-nc-nd/3.0/es/ |
|
dc.rights |
info:eu-repo/semantics/openAccess |
|
dc.source |
Treballs Finals de Grau (TFG) - Matemàtiques |
|
dc.subject |
Grups de Lie |
|
dc.subject |
Grups de transformacions |
|
dc.subject |
Espais topològics |
|
dc.subject |
Varietats diferenciables |
|
dc.subject |
Treballs de fi de grau |
|
dc.subject |
Lie groups |
|
dc.subject |
Transformation groups |
|
dc.subject |
Topological spaces |
|
dc.subject |
Differentiable manifolds |
|
dc.subject |
Bachelor's theses |
|
dc.title |
Varietats sense accions de $S^{1}$ no trivials |
|
dc.type |
info:eu-repo/semantics/bachelorThesis |
|