DSpace Repository

Recurrent neural networks for churn prediction

Show simple item record

dc.contributor Vitrià i Marca, Jordi
dc.contributor Torra Porras, Salvador
dc.creator Comas Turró, Montserrat
dc.date 2018-10-19T08:30:07Z
dc.date 2018-10-19T08:30:07Z
dc.date 2018-06
dc.date.accessioned 2024-12-16T10:26:54Z
dc.date.available 2024-12-16T10:26:54Z
dc.identifier http://hdl.handle.net/2445/125453
dc.identifier.uri http://fima-docencia.ub.edu:8080/xmlui/handle/123456789/21630
dc.description Treballs Finals de Grau de Matemàtiques, Facultat de Matemàtiques, Universitat de Barcelona, Any: 2018, Director: Jordi Vitrià i Marca i Salvador Torra Porras
dc.description [en] This project is based on a probabilistic Deep learning model called WTTE-RNN that applies recurrent neural networks along with survival analysis in order to model the distribution of time between specific events. The main motivation of the application of survival analysis is its adjustment to recurrent events, unlike the basic hypothesis of this theory which assumes that the existence of one event implies the end of data entry. In order to understand the main parts that constitute the model, an extensive section of this project addresses Deep learning and Survival Analysis. The approach of the model as a business tool for churn prediction is also important, in order to show how the knowledge acquired during the Mathematics degree can serve as a tool in the business strategy direction and so as a link with the Business degree.
dc.format 69 p.
dc.format application/pdf
dc.language eng
dc.rights cc-by-nc-nd (c) Montserrat Comas Turró, 2018
dc.rights http://creativecommons.org/licenses/by-nc-nd/3.0/es/
dc.rights info:eu-repo/semantics/openAccess
dc.source Treballs Finals de Grau (TFG) - Matemàtiques
dc.subject Xarxes neuronals (Informàtica)
dc.subject Aprenentatge automàtic
dc.subject Teoria de la predicció
dc.subject Resolució de problemes
dc.subject Algorismes computacionals
dc.subject Treballs de fi de grau
dc.subject Neural networks (Computer science)
dc.subject Machine learning
dc.subject Prediction theory
dc.subject Problem solving
dc.subject Computer algorithms
dc.subject Bachelor's theses
dc.title Recurrent neural networks for churn prediction
dc.type info:eu-repo/semantics/bachelorThesis


Files in this item

Files Size Format View

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record

Search DSpace


Advanced Search

Browse

My Account