Repositorio Dspace

Big data analysis applied to EEL spectroscopy

Mostrar el registro sencillo del ítem

dc.contributor Estradé Albiol, Sònia
dc.contributor Blanco Portals, Javier
dc.creator Sospedra Ramírez, Joan
dc.date 2018-10-10T13:47:16Z
dc.date 2018-10-10T13:47:16Z
dc.date 2018-06
dc.date.accessioned 2024-12-16T10:26:50Z
dc.date.available 2024-12-16T10:26:50Z
dc.identifier http://hdl.handle.net/2445/125267
dc.identifier.uri http://fima-docencia.ub.edu:8080/xmlui/handle/123456789/21577
dc.description Treballs Finals de Grau de Física, Facultat de Física, Universitat de Barcelona, Curs: 2018, Tutors: Sonia Estradé Albiol, Javier Blanco Portals
dc.description In order to characterize an unknown sample, big data and machine learning methods are proposed. An electron energy loss (EEL) spectrum image obtained in the transmission electron microscope is analyzed. Applying principal component analysis (PCA) to image EEL spectra, the noise present in the raw data can be discarded, and comparing with existing datasets and alternatively through clustering analysis, the presence of vanadium and oxygen in the sample over a substrate with lanthanum and oxygen can be recognized
dc.format 5 p.
dc.format application/pdf
dc.language eng
dc.rights cc-by-nc-nd (c) Sospedra, 2018
dc.rights http://creativecommons.org/licenses/by-nc-nd/3.0/es/
dc.rights info:eu-repo/semantics/openAccess
dc.source Treballs Finals de Grau (TFG) - Física
dc.subject Espectroscòpia de pèrdua d'energia d'electrons
dc.subject Dades massives
dc.subject Treballs de fi de grau
dc.subject Electron energy loss spectroscopy
dc.subject Big data
dc.subject Bachelor's theses
dc.title Big data analysis applied to EEL spectroscopy
dc.type info:eu-repo/semantics/bachelorThesis


Ficheros en el ítem

Ficheros Tamaño Formato Ver

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Buscar en DSpace


Búsqueda avanzada

Listar

Mi cuenta