Mostrar el registro sencillo del ítem
dc.contributor | Estradé Albiol, Sònia | |
dc.contributor | Blanco Portals, Javier | |
dc.creator | Sospedra Ramírez, Joan | |
dc.date | 2018-10-10T13:47:16Z | |
dc.date | 2018-10-10T13:47:16Z | |
dc.date | 2018-06 | |
dc.date.accessioned | 2024-12-16T10:26:50Z | |
dc.date.available | 2024-12-16T10:26:50Z | |
dc.identifier | http://hdl.handle.net/2445/125267 | |
dc.identifier.uri | http://fima-docencia.ub.edu:8080/xmlui/handle/123456789/21577 | |
dc.description | Treballs Finals de Grau de Física, Facultat de Física, Universitat de Barcelona, Curs: 2018, Tutors: Sonia Estradé Albiol, Javier Blanco Portals | |
dc.description | In order to characterize an unknown sample, big data and machine learning methods are proposed. An electron energy loss (EEL) spectrum image obtained in the transmission electron microscope is analyzed. Applying principal component analysis (PCA) to image EEL spectra, the noise present in the raw data can be discarded, and comparing with existing datasets and alternatively through clustering analysis, the presence of vanadium and oxygen in the sample over a substrate with lanthanum and oxygen can be recognized | |
dc.format | 5 p. | |
dc.format | application/pdf | |
dc.language | eng | |
dc.rights | cc-by-nc-nd (c) Sospedra, 2018 | |
dc.rights | http://creativecommons.org/licenses/by-nc-nd/3.0/es/ | |
dc.rights | info:eu-repo/semantics/openAccess | |
dc.source | Treballs Finals de Grau (TFG) - Física | |
dc.subject | Espectroscòpia de pèrdua d'energia d'electrons | |
dc.subject | Dades massives | |
dc.subject | Treballs de fi de grau | |
dc.subject | Electron energy loss spectroscopy | |
dc.subject | Big data | |
dc.subject | Bachelor's theses | |
dc.title | Big data analysis applied to EEL spectroscopy | |
dc.type | info:eu-repo/semantics/bachelorThesis |
Ficheros | Tamaño | Formato | Ver |
---|---|---|---|
No hay ficheros asociados a este ítem. |