Repositori DSpace/Manakin

Linearització conforme de punts fixos el·líptics

Mostra el registre parcial de l'element

dc.contributor Fagella Rabionet, Núria
dc.creator Camps Pallarès, Joan Maria
dc.date 2018-10-09T09:11:20Z
dc.date 2018-10-09T09:11:20Z
dc.date 2018-06-27
dc.date.accessioned 2024-12-16T10:26:49Z
dc.date.available 2024-12-16T10:26:49Z
dc.identifier http://hdl.handle.net/2445/125167
dc.identifier.uri http://fima-docencia.ub.edu:8080/xmlui/handle/123456789/21557
dc.description Treballs Finals de Grau de Matemàtiques, Facultat de Matemàtiques, Universitat de Barcelona, Any: 2018, Director: Núria Fagella Rabionet
dc.description [en] The study of dynamics of holomorphic functions near a fixed point has led to numerous works since the end of the nineteenth century, and the Siegel linearization problem plays an important role in this branch of the theory of dynamical systems in one complex variable. The natural way of studying the dynamics of a system near a fixed point is finding a local change of cordinates to represent this system in a simpler way. If $f+$ is a holomorphic function with a fixed point $z_{0} = f (z_{0})$, and multiplier $\lambda = f'(z_{0}) \in S^{1}, \lambda = e^{2\pi i \alpha}$ for an irrational number $\alpha$, we say that f is linearizable if it’s locally conjugated to the linear system $g(z) =\lambda z$. Then, Siegel’s problem consists in describing completely the family of numbers $\alpha$ for which every local system $f$ with multiplier $\lambda$ is linearizable. The contributions of H. Cremer and, specially, of C.L. Siegel to the problem, represent a big step in understanding it's trickyness, as well as the importance of the role that the arithmetical nature of $\alpha$ plays in it. The techniques introduced by J.C. Yoccoz in his resolution of Siegel’s problem, at the end of the past century, have inspired other results to help understanding the dynamics of $f$ in the non-linearizable case, yet not fully understood nowadays.
dc.format 57 p.
dc.format application/pdf
dc.language cat
dc.rights cc-by-nc-nd (c) Joan Maria Camps Pallarès, 2018
dc.rights http://creativecommons.org/licenses/by-nc-nd/3.0/es/
dc.rights info:eu-repo/semantics/openAccess
dc.source Treballs Finals de Grau (TFG) - Matemàtiques
dc.subject Funcions holomorfes
dc.subject Sistemes dinàmics diferenciables
dc.subject Teoria del punt fix
dc.subject Funcions analítiques
dc.subject Treballs de fi de grau
dc.subject Funcions holomorfes
dc.subject Differentiable dynamical systems
dc.subject Fixed point theory
dc.subject Analytic functions
dc.subject Bachelor's theses
dc.title Linearització conforme de punts fixos el·líptics
dc.type info:eu-repo/semantics/bachelorThesis


Fitxers en aquest element

Fitxers Grandària Format Visualització

No hi ha fitxers associats a aquest element.

Aquest element apareix en la col·lecció o col·leccions següent(s)

Mostra el registre parcial de l'element

Cerca a DSpace


Cerca avançada

Visualitza

El meu compte