DSpace Repository

Q-learning in collaborative multiagent systems

Show simple item record

dc.contributor López Sánchez, Maite
dc.creator González Trastoy, Alfred
dc.date 2018-08-02T08:53:56Z
dc.date 2018-08-02T08:53:56Z
dc.date 2018-02
dc.date.accessioned 2024-12-16T10:26:36Z
dc.date.available 2024-12-16T10:26:36Z
dc.identifier http://hdl.handle.net/2445/124087
dc.identifier.uri http://fima-docencia.ub.edu:8080/xmlui/handle/123456789/21329
dc.description Treballs Finals de Grau d'Enginyeria Informàtica, Facultat de Matemàtiques, Universitat de Barcelona, Any: 2018, Director: Maite López Sánchez
dc.description Q-learning is one of the most widely used reinforcement learning techniques. It is very effective for learning an optimal policy in any finite Markov decision process (MDP). Collaborative multiagent systems, though, are a challenge for self-interested agent implementation, as higher utility can be achieved via collaboration. To evaluate the Q-learning efficiency in collaborative multiagent systems, we will use a simplified version of the Malmo Collaborative AI Challenge (MCAC). It was designed by Microsoft and consists of a game where 2 players can collaborate to catch the pig (high reward) or leave the game (low reward). Each action costs 1, so knowing when to leave and when to chase the pig is key for achieving high scores. Two main problems are faced in the challenge: uncertainty of the other agent behaviour and a limited learning time. We propose solutions to both problems using a simplified MCAC environment, a stateaction abstraction and an agent type modelling. We have implemented an agent that is able to identify the other player behaviour (whether it is collaborating or not) and can learn an optimal policy against each type of player. Results show that Q-learning is an efficient and effective technique to solve collaborative multiagent systems.
dc.format 26 p.
dc.format application/pdf
dc.language eng
dc.rights memòria: cc-by-nc-sa (c) Alfred González Trastoy, 2018
dc.rights codi: GPL (c) Alfred González Trastoy, 2018
dc.rights http://creativecommons.org/licenses/by-nc-nd/3.0/es/
dc.rights http://www.gnu.org/licenses/gpl-3.0.ca.html
dc.rights info:eu-repo/semantics/openAccess
dc.source Treballs Finals de Grau (TFG) - Enginyeria Informàtica
dc.subject Aprenentatge automàtic
dc.subject Intel·ligència artificial
dc.subject Programari
dc.subject Treballs de fi de grau
dc.subject Aprenentatge per reforç (Intel·ligència artificial)
dc.subject Processos de Markov
dc.subject Machine learning
dc.subject Artificial intelligence
dc.subject Computer software
dc.subject Bachelor's theses
dc.subject Reinforcement learning
dc.subject Markov processes
dc.title Q-learning in collaborative multiagent systems
dc.type info:eu-repo/semantics/bachelorThesis


Files in this item

Files Size Format View

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record

Search DSpace


Advanced Search

Browse

My Account