Repositorio Dspace

Auger quenching-based modulation of electroluminescence from ion-implanted silicon nanocrystals

Mostrar el registro sencillo del ítem

dc.creator Carreras, Josep
dc.creator Bonafos, Caroline
dc.creator Montserrat i Martí, Josep
dc.creator Domínguez, Carlos (Domínguez Horna)
dc.creator Albiol i Cobos, Jordi
dc.creator Garrido Fernández, Blas
dc.date 2011-04-12T08:15:27Z
dc.date 2011-04-12T08:15:27Z
dc.date 2008
dc.date.accessioned 2024-12-16T10:26:29Z
dc.date.available 2024-12-16T10:26:29Z
dc.identifier 0957-4484
dc.identifier http://hdl.handle.net/2445/17583
dc.identifier 585158
dc.identifier.uri http://fima-docencia.ub.edu:8080/xmlui/handle/123456789/21168
dc.description We describe high-speed control of light from silicon nanocrystals under electrical excitation. The nanocrystals are fabricated by the ion implantation of Si+ in the 15?nm thick gate oxide of a field effect transistor at 6.5?keV. A characteristic read-peaked electroluminescence is obtained either by DC or AC gate excitation. However, AC gate excitation is found to have a frequency response that is limited by the radiative lifetimes of silicon nanocrystals, which makes impossible the direct modulation of light beyond 100?kb?s?1 rates. As a solution, we demonstrate that combined DC gate excitation along with an AC channel hot electron injection of electrons into the nanocrystals may be used to obtain a 100% deep modulation at rates of 200?Mb?s?1 and low modulating voltages. This approach may find applications in biological sensing integrated into CMOS, single-photon emitters or direct encoding of information into light from Si-nc doped with erbium systems, which exhibit net optical gain. In this respect, the main advantage compared to conventional electro-optical modulators based on plasma dispersion effects is the low power consumption (104 times smaller) and thus the inherent large scale of integration. A detailed electrical characterization is also given. An Si/SiO2 barrier change from ?b = 3.2 to 4.2?eV is found while the injection mechanism is changed from Fowler?Nordheim to channel hot electron, which is a clear signature of nanocrystal charging and subsequent electroluminescence quenching.
dc.format 17 p.
dc.format application/pdf
dc.language eng
dc.publisher IOP Publishing Ltd.
dc.relation Versió postprint del document publicat a http://dx.doi.org/10.1088/0957-4484/19/20/205201
dc.relation Nanotechnology, 2008, vol. 19, núm. 20, p. 205201-1-205201-9
dc.relation http://dx.doi.org/10.1088/0957-4484/19/20/205201
dc.relation info:eu-repo/grantAgreement/EC/FP7/224312/EU//HELIOS
dc.rights (c) IOP Publishing, 2009
dc.rights info:eu-repo/semantics/openAccess
dc.source Articles publicats en revistes (Enginyeria Electrònica i Biomèdica)
dc.subject Electrònica
dc.subject Matèria condensada
dc.subject Nanocristalls semiconductors
dc.subject Electronics
dc.subject Condensed matter
dc.subject Semiconductor nanocrystals
dc.title Auger quenching-based modulation of electroluminescence from ion-implanted silicon nanocrystals
dc.type info:eu-repo/semantics/article
dc.type info:eu-repo/semantics/acceptedVersion


Ficheros en el ítem

Ficheros Tamaño Formato Ver

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Buscar en DSpace


Búsqueda avanzada

Listar

Mi cuenta