DSpace Repository

Convergence and divergence of Fourier series

Show simple item record

dc.contributor Carro Rossell, María Jesús
dc.creator García Fernández, Miguel
dc.date 2018-05-24T08:39:20Z
dc.date 2018-05-24T08:39:20Z
dc.date 2018-01-19
dc.date.accessioned 2024-12-16T10:26:26Z
dc.date.available 2024-12-16T10:26:26Z
dc.identifier http://hdl.handle.net/2445/122536
dc.identifier.uri http://fima-docencia.ub.edu:8080/xmlui/handle/123456789/21095
dc.description Treballs Finals de Grau de Matemàtiques, Facultat de Matemàtiques, Universitat de Barcelona, Any: 2018, Director: María Jesús Carro Rossell
dc.description [en] In this project we study the convergence of Fourier series. Specifically, we first give some positive results about pointwise and uniform convergence, and then we prove two essential negative results: there exists a continuous function whose Fourier series diverges at some point and an integrable function whose Fourier series diverges almost at every point. In the case of divergence, we show that one can use other summability methods in order to represent the function as a trigonometric series.
dc.format 75 p.
dc.format application/pdf
dc.language eng
dc.rights cc-by-nc-nd (c) Miguel García Fernández, 2018
dc.rights http://creativecommons.org/licenses/by-nc-nd/3.0/es
dc.rights info:eu-repo/semantics/openAccess
dc.source Treballs Finals de Grau (TFG) - Matemàtiques
dc.subject Sèries de Fourier
dc.subject Convergència (Matemàtica)
dc.subject Sumabilitat
dc.subject Treballs de fi de grau
dc.subject Fourier series
dc.subject Convergence
dc.subject Sumabilitat
dc.subject Bachelor's theses
dc.title Convergence and divergence of Fourier series
dc.type info:eu-repo/semantics/bachelorThesis


Files in this item

Files Size Format View

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record

Search DSpace


Advanced Search

Browse

My Account