Mostrar el registro sencillo del ítem

dc.contributor Gispert Brasó, Joan
dc.creator Ortega Aguasca, Marc Alexis
dc.date 2018-05-10T08:17:20Z
dc.date 2018-05-10T08:17:20Z
dc.date 2017-06-28
dc.date.accessioned 2024-12-16T10:26:24Z
dc.date.available 2024-12-16T10:26:24Z
dc.identifier http://hdl.handle.net/2445/122266
dc.identifier.uri http://fima-docencia.ub.edu:8080/xmlui/handle/123456789/21021
dc.description Treballs Finals de Grau de Matemàtiques, Facultat de Matemàtiques, Universitat de Barcelona, Any: 2017, Director: Joan Gispert Brasó
dc.description [en] Birkhoff’s Theorem states that let K be a class of algebras, then K is an equational class if, only if, K is a variety. To reach this result, is necessary to understand some basic concepts of universal algebra. Varieties, free algebras and identities will be essential to understand the proof of Birkhoff’s Theorem. We study that statement and how to achieve the proof of it. We also study some of the immediate consequeces of Birkhoff’s Theorem in equational logic. Moreover, there is a final section as appendix where we study some properties of lattices.
dc.format 69 p.
dc.format application/pdf
dc.language cat
dc.rights cc-by-nc-nd (c) Marc Alexis Ortega Aguasca, 2017
dc.rights http://creativecommons.org/licenses/by-nc-nd/3.0/es
dc.rights info:eu-repo/semantics/openAccess
dc.source Treballs Finals de Grau (TFG) - Matemàtiques
dc.subject Àlgebra universal
dc.subject Treballs de fi de grau
dc.subject Teoria dels reticles
dc.subject Universal algebra
dc.subject Bachelor's theses
dc.subject Lattice theory
dc.title El teorema de Birkhoff
dc.type info:eu-repo/semantics/bachelorThesis


Ficheros en el ítem

Ficheros Tamaño Formato Ver

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Buscar en DSpace


Búsqueda avanzada

Listar

Mi cuenta