DSpace Repository

La capacitat analı́tica en problemes d’aproximació racional

Show simple item record

dc.contributor Mas Blesa, Albert
dc.creator Banach Cañı́s, Josep
dc.date 2018-04-17T09:12:44Z
dc.date 2018-04-17T09:12:44Z
dc.date 2017-06-28
dc.date.accessioned 2024-12-16T10:26:21Z
dc.date.available 2024-12-16T10:26:21Z
dc.identifier http://hdl.handle.net/2445/121593
dc.identifier.uri http://fima-docencia.ub.edu:8080/xmlui/handle/123456789/20948
dc.description Treballs Finals de Grau de Matemàtiques, Facultat de Matemàtiques, Universitat de Barcelona, Any: 2017, Director: Albert Mas Blesa
dc.description [en] This paper studies the relationship, depending on the compact set $K \subset \mathbb{C}$, between the family of continuous functions on $K, \mathcal{C}(K)$, the family of continuous functions on $K$ and analytics on $\overset{\circ}{K}, \mathcal{A}(K)$, the family of uniformly approximable functions on $K$ by rational functions with poles out on $K, \mathcal{R}(K)$, and the family of uniformly approximable functions on $K$ by polynomials, $\mathcal{P}(K)$. We will see that it is easy to characterise $K$ in order to achive $\mathcal{P}(K)=\mathcal{R}(K)$ or $\mathcal{A}(K)=\mathcal{C}(K)$, but it is more complicated to do the same in order to achieve $\mathcal{R}(K)=\mathcal{A}(K)$. In order to see all the possible relationships, we present some new concepts like the Hausdorff measure, content and dimension, the analytic capacity and the continuous analytic capacity. The main part of this essay is focused on the Vitushkin Theorem, which allows us to characterise the compacts $K$, such as $\mathcal{R}(K)=\mathcal{A}(K)$. we present a demostration scheme and the results obtained from it. In addition, we will also state the Inner Boundary Conjecture that provides us with the sufficient condition on $K$ to ensure that $\mathcal{R}(K)=\mathcal{A}(K)$.
dc.format 36 p.
dc.format application/pdf
dc.language eng
dc.rights cc-by-nc-nd (c) Josep Banach Cañı́s, 2017
dc.rights http://creativecommons.org/licenses/by-nc-nd/3.0/es
dc.rights info:eu-repo/semantics/openAccess
dc.source Treballs Finals de Grau (TFG) - Matemàtiques
dc.subject Funcions contínues
dc.subject Treballs de fi de grau
dc.subject Funcions analítiques
dc.subject Funcions de variables complexes
dc.subject Continuous functions
dc.subject Bachelor's theses
dc.subject Analytic functions
dc.subject Functions of complex variables
dc.title La capacitat analı́tica en problemes d’aproximació racional
dc.type info:eu-repo/semantics/bachelorThesis


Files in this item

Files Size Format View

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record

Search DSpace


Advanced Search

Browse

My Account