Repositori DSpace/Manakin

Various extensions of the Müntz-Szász theorem

Mostra el registre parcial de l'element

dc.contributor Carro Rossell, María Jesús
dc.creator Baena i Miret, Sergi
dc.date 2018-03-26T10:24:17Z
dc.date 2018-03-26T10:24:17Z
dc.date 2017-09-10
dc.date.accessioned 2024-12-16T10:26:20Z
dc.date.available 2024-12-16T10:26:20Z
dc.identifier http://hdl.handle.net/2445/121104
dc.identifier.uri http://fima-docencia.ub.edu:8080/xmlui/handle/123456789/20936
dc.description Treballs finals del Màster en Matemàtica Avançada, Facultat de matemàtiques, Universitat de Barcelona, Any: 2017, Director: María Jesús Carro Rossell
dc.description The Müntz-Szász Classical Theorem characterizes increasing sequences $\{\lambda_{j}\}^{+\infty}_{j=0}$ with $0=\lambda{_0}<\lambda{_1}<\lambda{2}<...$ for which the space $\langle1, x^{\lambda{_1}}, x^{\lambda{_2}},...\rangle$ is dense or not in $C([0, 1])$, depending on if the series $\sum^{+\infty}_{j=1}1/\lambda_{j}$ diverges or not respectively. In the book Polynomials and Polynomials Inequalities (see [7]), Tamás Erdélyi and Peter Borwein explain the tools needed in order to show a complete and extended proof of the Müntz-Szász Theorem. To do so, they use some techniques of complex analysis and also the algebraic properties of the zeros of some functions called Chebyshev functions. On these notes we put together all these ideas, beginning with the well known Weierstrass Approximation Theorem, continuing with the development of the complex analysis results needed and giving a complete proof of an extended version of the Müntz-Szász Theorem. Such new version characterizes arbitrary sequences $\{\lambda_{j}\}^{+\infty}_{j=0}$ of different arbitrary positive real numbers (except for $\lambda_{0}=0$ for which the space of continuous functions spanned by the powers $x^{\lambda j}$ is dense or not in $C([0, 1])$. In that case, it depends on if the series $\sum^{+ \infty}_{j=1}\lambda_{j}/(\lambda^{2}_{j}+1)$ diverges or not respectively. Moreover, pursuing in this direction, we also have studied an equivalent result for the Lebesgue spaces that characterizes arbitrary different sequences $\{\lambda_{j}\}^{+\infty}_{j=1}$ of real numbers greater than $-1/p$ for which the space $\langle x^{\lambda 1}, x^{\lambda 2}, x^{\lambda 3}...\rangle$ is dense or not in $L^p([0,1])$ which in that case depends on if the series $\sum^{+\infty}_{j=1}(\lambda_{j}+1/p)/((\lambda_{j}+1/p)^{2}+1)$ diverges or not respectively.
dc.format 106 p.
dc.format application/pdf
dc.language eng
dc.rights cc-by-nc-nd (c) Sergi Baena i Miret, 2017
dc.rights http://creativecommons.org/licenses/by-nc-nd/3.0/es/
dc.rights info:eu-repo/semantics/openAccess
dc.source Màster Oficial - Matemàtica Avançada
dc.subject Teoria de l'aproximació
dc.subject Teoria de la mesura
dc.subject Treballs de fi de màster
dc.subject Anàlisi funcional
dc.subject Funcions contínues
dc.subject Approximation theory
dc.subject Measure theory
dc.subject Master's theses
dc.subject Functional analysis
dc.subject Continuous functions
dc.title Various extensions of the Müntz-Szász theorem
dc.type info:eu-repo/semantics/masterThesis


Fitxers en aquest element

Fitxers Grandària Format Visualització

No hi ha fitxers associats a aquest element.

Aquest element apareix en la col·lecció o col·leccions següent(s)

Mostra el registre parcial de l'element

Cerca a DSpace


Cerca avançada

Visualitza

El meu compte