Repositori DSpace/Manakin

Weighted inequalities for the Hardy operator

Mostra el registre parcial de l'element

dc.contributor Soria de Diego, F. Javier
dc.creator Arias García, Sergi
dc.date 2018-03-23T11:38:52Z
dc.date 2018-03-23T11:38:52Z
dc.date 2017-06-19
dc.date.accessioned 2024-12-16T10:26:20Z
dc.date.available 2024-12-16T10:26:20Z
dc.identifier http://hdl.handle.net/2445/121063
dc.identifier.uri http://fima-docencia.ub.edu:8080/xmlui/handle/123456789/20932
dc.description Treballs finals del Màster en Matemàtica Avançada, Facultat de matemàtiques, Universitat de Barcelona, Any: 2017, Director: F. Javier Soria de Diego
dc.description This project revolves around Hardy’s integral inequality, proved by G. H. Hardy in 1925. This inequality has been studied by a large number of authors during the twentieth century and has motivated some important lines of study which are currently active. We study the classical Hardy’s integral inequality and its generalizations. We analyse some of the first results including weighted inequalities and prove the key theorem of B. Muckenhoupt, who characterized Hardy’s integral inequality with weights for the diagonal case in 1972. After this fundamental result, different authors considered the general context and new characterizations appeared until closing definitely the problem in 2000. Also we study Hardy’s integral inequality in the cone of monotone functions. This point of view is really interesting and has a lot of surprising consequences. For example, M. A. Ariño and B. Muckenhoupt realized in 1990 that Hardy’s inequality in the cone of monotone functions is equivalent to the boundedness of the Hardy-Littlewood maximal operator between Lorentz spaces. Just after E. Sawyer proved that the classical Lorentz space $\Lambda ^{p}(w)$ is normable if, and only if, Hardy’s integral inequality in the cone of monotone functions is satisfied for $w$. We study also the normability of both spaces $\Lambda^{p} (w)$ and $\Lambda^{p,\infty} (w)$ in terms of the boundedness of the maximal operator.
dc.format 91 p.
dc.format application/pdf
dc.language eng
dc.rights cc-by-nc-nd (c) Sergi Arias Garcı́a, 2017
dc.rights http://creativecommons.org/licenses/by-nc-nd/3.0/es/
dc.rights info:eu-repo/semantics/openAccess
dc.source Màster Oficial - Matemàtica Avançada
dc.subject Desigualtats (Matemàtica)
dc.subject Interpolació (Matemàtica)
dc.subject Treballs de fi de màster
dc.subject Espais de Lorentz
dc.subject Espais funcionals
dc.subject Anàlisi harmònica
dc.subject Inequalities (Mathematics)
dc.subject Interpolation
dc.subject Master's theses
dc.subject Lorentz spaces
dc.subject Function spaces
dc.subject Harmonic analysis
dc.title Weighted inequalities for the Hardy operator
dc.type info:eu-repo/semantics/masterThesis


Fitxers en aquest element

Fitxers Grandària Format Visualització

No hi ha fitxers associats a aquest element.

Aquest element apareix en la col·lecció o col·leccions següent(s)

Mostra el registre parcial de l'element

Cerca a DSpace


Cerca avançada

Visualitza

El meu compte