Repositori DSpace/Manakin

Objectes cel·lulars en categories de models

Mostra el registre parcial de l'element

dc.contributor Casacuberta, Carles
dc.creator García Barros, Manuela
dc.date 2018-03-22T09:25:41Z
dc.date 2018-03-22T09:25:41Z
dc.date 2016-09-11
dc.date.accessioned 2024-12-16T10:26:20Z
dc.date.available 2024-12-16T10:26:20Z
dc.identifier http://hdl.handle.net/2445/120986
dc.identifier.uri http://fima-docencia.ub.edu:8080/xmlui/handle/123456789/20922
dc.description Treballs finals del Màster en Matemàtica Avançada, Facultat de matemàtiques, Universitat de Barcelona, Any: 2016, Director: Carles Casacuberta
dc.description Whitehead’s Theorem is a classical result in algebraic topology which states that any continuous map between CW complexes which is both inducing a bijection of path connected components and isomorphisms in homotopy groups for any choice of base point is an homotopy equivalence. CW complexes are topological spaces built through an interative process of cell attachment. In the 1990s a more general notion of cellular object in the framework of model categories was given and it started a really productive work on cellular objects in many other areas like commutative algebra, group theory or algebraic geometry. The first aim of this work is to write down the proof of Whitehead’s Theorem in pointed model categories which states that an $A$-equivalence between $A$-cellular fibrant objects is an homotopy equivalence for any cofibrant object $A$.
dc.format 219 p.
dc.format application/pdf
dc.language eng
dc.rights cc-by-nc-nd (c) Manuela GarcÍa Barros, 2016
dc.rights http://creativecommons.org/licenses/by-nc-nd/3.0/es/
dc.rights info:eu-repo/semantics/openAccess
dc.source Màster Oficial - Matemàtica Avançada
dc.subject Topologia algebraica
dc.subject Teoria de grups
dc.subject Treballs de fi de màster
dc.subject Categories (Matemàtica)
dc.subject Algebraic topology
dc.subject Group theory
dc.subject Master's theses
dc.subject Categories (Mathematics)
dc.title Objectes cel·lulars en categories de models
dc.type info:eu-repo/semantics/masterThesis


Fitxers en aquest element

Fitxers Grandària Format Visualització

No hi ha fitxers associats a aquest element.

Aquest element apareix en la col·lecció o col·leccions següent(s)

Mostra el registre parcial de l'element

Cerca a DSpace


Cerca avançada

Visualitza

El meu compte