Show simple item record

dc.creator Xambó Descamps, Sebastián
dc.date 2011-03-08T09:49:25Z
dc.date 2011-03-08T09:49:25Z
dc.date 1982
dc.date.accessioned 2024-12-16T10:26:18Z
dc.date.available 2024-12-16T10:26:18Z
dc.identifier 0010-0757
dc.identifier http://hdl.handle.net/2445/16933
dc.identifier 3889
dc.identifier.uri http://fima-docencia.ub.edu:8080/xmlui/handle/123456789/20878
dc.description In [S 1] Saint-Donat shows how to apply a theorem of Del Pezzo and Bertini (quoted as theorem l below) to recover the main result of [XXX] concerning the projective classification of codimension two cubic varieties. In this paper we show how the samc theorem, and sorne relatcd results, can be used to produce an "enumcration" of quartic varieties somcwhat more cxplicit than that given by Swinncrton-Dyer in lS2]. Our main rcsult esscntially says that a codimension 2 quartic variety which is contained in a unique quadric is rationally ruled, so that, by a theorem of Bertini, must be the projection uf a quartic scroll (see theorems 5 ami 6 bclow for complete statements).
dc.format 13 p.
dc.format application/pdf
dc.language eng
dc.publisher Universitat de Barcelona
dc.relation Reproducció del document publicat a: http://www.collectanea.ub.edu/index.php/Collectanea/article/view/3556/4235
dc.relation Collectanea Mathematica, 1982, vol. 33, núm. 1, p. 89-101
dc.rights (c) Universitat de Barcelona, 1982
dc.rights info:eu-repo/semantics/openAccess
dc.source Articles publicats en revistes (Matemàtiques i Informàtica)
dc.subject Geometria algebraica
dc.subject Algebraic geometry
dc.title Scrolls and Quartics
dc.type info:eu-repo/semantics/article
dc.type info:eu-repo/semantics/publishedVersion


Files in this item

Files Size Format View

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record

Search DSpace


Advanced Search

Browse

My Account