DSpace Repository

On the Gorenstein property of the diagonals of the Rees algebra. (Dedicated to the memory of Fernando Serrano.)

Show simple item record

dc.creator Lavila Vidal, Olga
dc.creator Zarzuela, Santiago
dc.date 2011-03-08T09:49:24Z
dc.date 2011-03-08T09:49:24Z
dc.date 1998
dc.date.accessioned 2024-12-16T10:26:18Z
dc.date.available 2024-12-16T10:26:18Z
dc.identifier 0010-0757
dc.identifier http://hdl.handle.net/2445/16932
dc.identifier 186602
dc.identifier.uri http://fima-docencia.ub.edu:8080/xmlui/handle/123456789/20876
dc.description Let Y be a closed subscheme of Pn−1 k defined by a homogeneous ideal I⊂ A=k[X1,...,Xn], and X obtained by blowing up Pn−1 k along Y. Denote by Ic the degree c part of I and assume that I is generated by forms of degree ≤ d. Then the rings k[(Ie)c] are coordinate rings of projective embeddings of X in PN−1 k , where N=dimk(Ie)c for c ≥ de+1. The aim of this paper is to study the Gorenstein property of the rings k[(Ie)c] . Under mild hypothesis we prove that there exist at most a finite number of diagonals (c, e) such that k[(Ie)c] is Gorenstein, and we determine them for several families of ideals.
dc.format 15 p.
dc.format application/pdf
dc.language eng
dc.publisher Universitat de Barcelona
dc.relation Reproducció del document publicat a: http://www.collectanea.ub.edu/index.php/Collectanea/article/view/3948/4787
dc.relation Collectanea Mathematica, 1998, vol. 49, num. 2-3, p. 383-397
dc.rights (c) Universitat de Barcelona, 1998
dc.rights info:eu-repo/semantics/openAccess
dc.source Articles publicats en revistes (Matemàtiques i Informàtica)
dc.subject Anells commutatius
dc.subject Geometria algebraica
dc.subject Categories (Matemàtica)
dc.subject Commutative rings
dc.subject Algebraic geometry
dc.subject Categories (Mathematics)
dc.title On the Gorenstein property of the diagonals of the Rees algebra. (Dedicated to the memory of Fernando Serrano.)
dc.type info:eu-repo/semantics/article
dc.type info:eu-repo/semantics/publishedVersion


Files in this item

Files Size Format View

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record

Search DSpace


Advanced Search

Browse

My Account