dc.creator |
Lavila Vidal, Olga |
|
dc.creator |
Zarzuela, Santiago |
|
dc.date |
2011-03-08T09:49:24Z |
|
dc.date |
2011-03-08T09:49:24Z |
|
dc.date |
1998 |
|
dc.date.accessioned |
2024-12-16T10:26:18Z |
|
dc.date.available |
2024-12-16T10:26:18Z |
|
dc.identifier |
0010-0757 |
|
dc.identifier |
http://hdl.handle.net/2445/16932 |
|
dc.identifier |
186602 |
|
dc.identifier.uri |
http://fima-docencia.ub.edu:8080/xmlui/handle/123456789/20876 |
|
dc.description |
Let Y be a closed subscheme of Pn−1
k defined by a homogeneous ideal
I⊂ A=k[X1,...,Xn], and X obtained by blowing up Pn−1
k along Y. Denote by
Ic the degree c part of I and assume that I is generated by forms of degree
≤ d. Then the rings k[(Ie)c] are coordinate rings of projective embeddings of X
in PN−1
k , where N=dimk(Ie)c for c ≥ de+1. The aim of this paper is to study
the Gorenstein property of the rings k[(Ie)c] . Under mild hypothesis we prove
that there exist at most a finite number of diagonals (c, e) such that k[(Ie)c] is
Gorenstein, and we determine them for several families of ideals. |
|
dc.format |
15 p. |
|
dc.format |
application/pdf |
|
dc.language |
eng |
|
dc.publisher |
Universitat de Barcelona |
|
dc.relation |
Reproducció del document publicat a: http://www.collectanea.ub.edu/index.php/Collectanea/article/view/3948/4787 |
|
dc.relation |
Collectanea Mathematica, 1998, vol. 49, num. 2-3, p. 383-397 |
|
dc.rights |
(c) Universitat de Barcelona, 1998 |
|
dc.rights |
info:eu-repo/semantics/openAccess |
|
dc.source |
Articles publicats en revistes (Matemàtiques i Informàtica) |
|
dc.subject |
Anells commutatius |
|
dc.subject |
Geometria algebraica |
|
dc.subject |
Categories (Matemàtica) |
|
dc.subject |
Commutative rings |
|
dc.subject |
Algebraic geometry |
|
dc.subject |
Categories (Mathematics) |
|
dc.title |
On the Gorenstein property of the diagonals of the Rees algebra. (Dedicated to the memory of Fernando Serrano.) |
|
dc.type |
info:eu-repo/semantics/article |
|
dc.type |
info:eu-repo/semantics/publishedVersion |
|