Mostra el registre parcial de l'element
dc.creator | Costa Farràs, Laura | |
dc.date | 2011-03-08T09:49:17Z | |
dc.date | 2011-03-08T09:49:17Z | |
dc.date | 1998 | |
dc.date.accessioned | 2024-12-16T10:26:18Z | |
dc.date.available | 2024-12-16T10:26:18Z | |
dc.identifier | 0010-0757 | |
dc.identifier | http://hdl.handle.net/2445/16925 | |
dc.identifier | 152310 | |
dc.identifier.uri | http://fima-docencia.ub.edu:8080/xmlui/handle/123456789/20861 | |
dc.description | Let $X$ be an algebraic $K3$ surface. Fix an ample divisor $H$ on $X,L\in Pic(X)$ and $c_2\in\mathbb{Z}$. Let $M_H(r; L, c_2)$ be the moduli space of rank $r,H$-stable vector bundles $E$ over $X$ with det($E) = L$ and $c_2(E) = c_2$. The goal of this paper is to determine invariants ($r; c_1, c_2$) for which $M_H(r; L, c_2)$ is birational to some Hilbert scheme $Hilb^l(X)$. | |
dc.format | 10 p. | |
dc.format | application/pdf | |
dc.language | eng | |
dc.publisher | Universitat de Barcelona | |
dc.relation | Reproducció del document publicat a: https://www.raco.cat/index.php/CollectaneaMathematica/article/view/56457 | |
dc.relation | Collectanea Mathematica, 1998, vol. 49, núm. 2-3, p. 273-282 | |
dc.rights | (c) Universitat de Barcelona, 1998 | |
dc.rights | info:eu-repo/semantics/openAccess | |
dc.source | Articles publicats en revistes (Matemàtiques i Informàtica) | |
dc.subject | Esquemes de Hilbert | |
dc.subject | Teoria de mòduls | |
dc.subject | Superfícies algebraiques | |
dc.subject | Hilbert schemes | |
dc.subject | Moduli theory | |
dc.subject | Algebraic surfaces | |
dc.title | K3 surfaces: moduli spaces and Hilbert schemes | |
dc.type | info:eu-repo/semantics/article | |
dc.type | info:eu-repo/semantics/publishedVersion |
Fitxers | Grandària | Format | Visualització |
---|---|---|---|
No hi ha fitxers associats a aquest element. |