DSpace Repository

K3 surfaces: moduli spaces and Hilbert schemes

Show simple item record

dc.creator Costa Farràs, Laura
dc.date 2011-03-08T09:49:17Z
dc.date 2011-03-08T09:49:17Z
dc.date 1998
dc.date.accessioned 2024-12-16T10:26:18Z
dc.date.available 2024-12-16T10:26:18Z
dc.identifier 0010-0757
dc.identifier http://hdl.handle.net/2445/16925
dc.identifier 152310
dc.identifier.uri http://fima-docencia.ub.edu:8080/xmlui/handle/123456789/20861
dc.description Let $X$ be an algebraic $K3$ surface. Fix an ample divisor $H$ on $X,L\in Pic(X)$ and $c_2\in\mathbb{Z}$. Let $M_H(r; L, c_2)$ be the moduli space of rank $r,H$-stable vector bundles $E$ over $X$ with det($E) = L$ and $c_2(E) = c_2$. The goal of this paper is to determine invariants ($r; c_1, c_2$) for which $M_H(r; L, c_2)$ is birational to some Hilbert scheme $Hilb^l(X)$.
dc.format 10 p.
dc.format application/pdf
dc.language eng
dc.publisher Universitat de Barcelona
dc.relation Reproducció del document publicat a: https://www.raco.cat/index.php/CollectaneaMathematica/article/view/56457
dc.relation Collectanea Mathematica, 1998, vol. 49, núm. 2-3, p. 273-282
dc.rights (c) Universitat de Barcelona, 1998
dc.rights info:eu-repo/semantics/openAccess
dc.source Articles publicats en revistes (Matemàtiques i Informàtica)
dc.subject Esquemes de Hilbert
dc.subject Teoria de mòduls
dc.subject Superfícies algebraiques
dc.subject Hilbert schemes
dc.subject Moduli theory
dc.subject Algebraic surfaces
dc.title K3 surfaces: moduli spaces and Hilbert schemes
dc.type info:eu-repo/semantics/article
dc.type info:eu-repo/semantics/publishedVersion


Files in this item

Files Size Format View

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record

Search DSpace


Advanced Search

Browse

My Account