dc.creator |
Costa Farràs, Laura |
|
dc.date |
2011-03-08T09:49:17Z |
|
dc.date |
2011-03-08T09:49:17Z |
|
dc.date |
1998 |
|
dc.date.accessioned |
2024-12-16T10:26:18Z |
|
dc.date.available |
2024-12-16T10:26:18Z |
|
dc.identifier |
0010-0757 |
|
dc.identifier |
http://hdl.handle.net/2445/16925 |
|
dc.identifier |
152310 |
|
dc.identifier.uri |
http://fima-docencia.ub.edu:8080/xmlui/handle/123456789/20861 |
|
dc.description |
Let $X$ be an algebraic $K3$ surface. Fix an ample divisor $H$ on $X,L\in Pic(X)$ and $c_2\in\mathbb{Z}$. Let $M_H(r; L, c_2)$ be the moduli space of rank $r,H$-stable vector bundles $E$ over $X$ with det($E) = L$ and $c_2(E) = c_2$. The goal of this paper is to determine invariants ($r; c_1, c_2$) for which $M_H(r; L, c_2)$ is birational to some Hilbert scheme $Hilb^l(X)$. |
|
dc.format |
10 p. |
|
dc.format |
application/pdf |
|
dc.language |
eng |
|
dc.publisher |
Universitat de Barcelona |
|
dc.relation |
Reproducció del document publicat a: https://www.raco.cat/index.php/CollectaneaMathematica/article/view/56457 |
|
dc.relation |
Collectanea Mathematica, 1998, vol. 49, núm. 2-3, p. 273-282 |
|
dc.rights |
(c) Universitat de Barcelona, 1998 |
|
dc.rights |
info:eu-repo/semantics/openAccess |
|
dc.source |
Articles publicats en revistes (Matemàtiques i Informàtica) |
|
dc.subject |
Esquemes de Hilbert |
|
dc.subject |
Teoria de mòduls |
|
dc.subject |
Superfícies algebraiques |
|
dc.subject |
Hilbert schemes |
|
dc.subject |
Moduli theory |
|
dc.subject |
Algebraic surfaces |
|
dc.title |
K3 surfaces: moduli spaces and Hilbert schemes |
|
dc.type |
info:eu-repo/semantics/article |
|
dc.type |
info:eu-repo/semantics/publishedVersion |
|