Mostrar el registro sencillo del ítem
dc.creator | D'Andrea, Carlos, 1973- | |
dc.creator | Chipalkatti, Jaydeep | |
dc.date | 2011-03-08T09:49:05Z | |
dc.date | 2011-03-08T09:49:05Z | |
dc.date | 2007 | |
dc.date.accessioned | 2024-12-16T10:26:17Z | |
dc.date.available | 2024-12-16T10:26:17Z | |
dc.identifier | 0010-0757 | |
dc.identifier | http://hdl.handle.net/2445/16913 | |
dc.identifier | 556672 | |
dc.identifier.uri | http://fima-docencia.ub.edu:8080/xmlui/handle/123456789/20837 | |
dc.description | Let ∆ denote the discriminant of the generic binary d-ic. We show that for d ≥ 3, the Jacobian ideal of ∆ is perfect of height 2. Moreover we describe its SL2-equivariant minimal resolution and the associated differential equations satisfied by ∆. A similar result is proved for the resultant of two forms of orders d, e whenever d ≥ e − 1. If Φn denotes the locus of binary forms with total root multiplicity ≥ d − n, then we show that the ideal of Φn is also perfect, and we construct a covariant which characterizes this locus. We also explain the role of the Morley form in the determinantal formula for the resultant. This relies upon a calculation which is done in the appendix by A. Abdesselam. | |
dc.format | 26 p. | |
dc.format | application/pdf | |
dc.language | eng | |
dc.publisher | Universitat de Barcelona | |
dc.relation | Reproducció del document publicat a: http://www.collectanea.ub.edu/index.php/Collectanea/article/view/4107/5023 | |
dc.relation | Collectanea Mathematica, 2007, vol. 58, num. 2, p. 155-180 | |
dc.rights | (c) Universitat de Barcelona, 2007 | |
dc.rights | info:eu-repo/semantics/openAccess | |
dc.source | Articles publicats en revistes (Matemàtiques i Informàtica) | |
dc.subject | Geometria algebraica | |
dc.subject | Algebraic geometry | |
dc.title | On the Jacobian ideal of the binary discriminant (with an appendix by Abdelmalek Abdesselam) | |
dc.type | info:eu-repo/semantics/article | |
dc.type | info:eu-repo/semantics/publishedVersion |
Ficheros | Tamaño | Formato | Ver |
---|---|---|---|
No hay ficheros asociados a este ítem. |