DSpace Repository

On the Jacobian ideal of the binary discriminant (with an appendix by Abdelmalek Abdesselam)

Show simple item record

dc.creator D'Andrea, Carlos, 1973-
dc.creator Chipalkatti, Jaydeep
dc.date 2011-03-08T09:49:05Z
dc.date 2011-03-08T09:49:05Z
dc.date 2007
dc.date.accessioned 2024-12-16T10:26:17Z
dc.date.available 2024-12-16T10:26:17Z
dc.identifier 0010-0757
dc.identifier http://hdl.handle.net/2445/16913
dc.identifier 556672
dc.identifier.uri http://fima-docencia.ub.edu:8080/xmlui/handle/123456789/20837
dc.description Let ∆ denote the discriminant of the generic binary d-ic. We show that for d ≥ 3, the Jacobian ideal of ∆ is perfect of height 2. Moreover we describe its SL2-equivariant minimal resolution and the associated differential equations satisfied by ∆. A similar result is proved for the resultant of two forms of orders d, e whenever d ≥ e − 1. If Φn denotes the locus of binary forms with total root multiplicity ≥ d − n, then we show that the ideal of Φn is also perfect, and we construct a covariant which characterizes this locus. We also explain the role of the Morley form in the determinantal formula for the resultant. This relies upon a calculation which is done in the appendix by A. Abdesselam.
dc.format 26 p.
dc.format application/pdf
dc.language eng
dc.publisher Universitat de Barcelona
dc.relation Reproducció del document publicat a: http://www.collectanea.ub.edu/index.php/Collectanea/article/view/4107/5023
dc.relation Collectanea Mathematica, 2007, vol. 58, num. 2, p. 155-180
dc.rights (c) Universitat de Barcelona, 2007
dc.rights info:eu-repo/semantics/openAccess
dc.source Articles publicats en revistes (Matemàtiques i Informàtica)
dc.subject Geometria algebraica
dc.subject Algebraic geometry
dc.title On the Jacobian ideal of the binary discriminant (with an appendix by Abdelmalek Abdesselam)
dc.type info:eu-repo/semantics/article
dc.type info:eu-repo/semantics/publishedVersion


Files in this item

Files Size Format View

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record

Search DSpace


Advanced Search

Browse

My Account