Repositori DSpace/Manakin

Bistability of mitochondrial respiration underlies paradoxical reactive oxygen species generation induced by anoxia

Mostra el registre parcial de l'element

dc.creator Selivanov, Vitaly
dc.creator Votyakova, Tatyana V.
dc.creator Zeak, Jennifer A.
dc.creator Trucco, Massimo
dc.creator Roca Elias, Josep
dc.creator Cascante i Serratosa, Marta
dc.date 2011-01-13T14:59:41Z
dc.date 2011-01-13T14:59:41Z
dc.date 2009-12-24
dc.date.accessioned 2024-12-16T10:25:50Z
dc.date.available 2024-12-16T10:25:50Z
dc.identifier 1553-7358
dc.identifier http://hdl.handle.net/2445/15283
dc.identifier 576851
dc.identifier 20041200
dc.identifier.uri http://fima-docencia.ub.edu:8080/xmlui/handle/123456789/20093
dc.description Increased production of reactive oxygen species (ROS) in mitochondria underlies major systemic diseases, and this clinical problem stimulates a great scientific interest in the mechanism of ROS generation. However, the mechanism of hypoxia-induced change in ROS production is not fully understood. To mathematically analyze this mechanism in details, taking into consideration all the possible redox states formed in the process of electron transport, even for respiratory complex III, a system of hundreds of differential equations must be constructed. Aimed to facilitate such tasks, we developed a new methodology of modeling, which resides in the automated construction of large sets of differential equations. The detailed modeling of electron transport in mitochondria allowed for the identification of two steady state modes of operation (bistability) of respiratory complex III at the same microenvironmental conditions. Various perturbations could induce the transition of respiratory chain from one steady state to another. While normally complex III is in a low ROS producing mode, temporal anoxia could switch it to a high ROS producing state, which persists after the return to normal oxygen supply. This prediction, which we qualitatively validated experimentally, explains the mechanism of anoxia-induced cell damage. Recognition of bistability of complex III operation may enable novel therapeutic strategies for oxidative stress and our method of modeling could be widely used in systems biology studies.
dc.format 12 p.
dc.format application/pdf
dc.language eng
dc.publisher PLoS
dc.relation info:eu-repo/semantics/altIdentifier/doi/10.1371/journal.pcbi.1000619
dc.relation Reproducció del document publicat a: http://dx.doi.org/10.1371/journal.pcbi.1000619
dc.relation PLoS Computational Biology, 2009, 5(12): e1000619
dc.relation http://dx.doi.org/10.1371/journal.pcbi.1000619
dc.relation info:eu-repo/grantAgreement/EC/FP7/202013/EU//DIAPREPP
dc.relation info:eu-repo/grantAgreement/EC/FP7/222639/EU//ETHERPATHS
dc.rights (c) cc-by Selivanov, et al., 2009
dc.rights http://creativecommons.org/licenses/by/3.0
dc.rights info:eu-repo/semantics/openAccess
dc.source Articles publicats en revistes (Bioquímica i Biomedicina Molecular)
dc.subject Respiració
dc.subject Mitocondris
dc.subject Anoxèmia
dc.subject Mitochondrial respiration
dc.subject Anoxia
dc.title Bistability of mitochondrial respiration underlies paradoxical reactive oxygen species generation induced by anoxia
dc.type info:eu-repo/semantics/article
dc.type info:eu-repo/semantics/publishedVersion


Fitxers en aquest element

Fitxers Grandària Format Visualització

No hi ha fitxers associats a aquest element.

Aquest element apareix en la col·lecció o col·leccions següent(s)

Mostra el registre parcial de l'element

Cerca a DSpace


Cerca avançada

Visualitza

El meu compte