DSpace Repository

Realising $S_n$ and $A_n$ as Galois groups Over $\mathbb{Q}$ : an introduction to the inverse Galois problem

Show simple item record

dc.contributor Vila, Núria (Vila i Oliva)
dc.creator Martínez i Sellarès, Mireia
dc.date 2017-06-29T10:37:06Z
dc.date 2017-06-29T10:37:06Z
dc.date 2017-01-17
dc.date.accessioned 2024-12-16T10:24:34Z
dc.date.available 2024-12-16T10:24:34Z
dc.identifier http://hdl.handle.net/2445/113081
dc.identifier.uri http://fima-docencia.ub.edu:8080/xmlui/handle/123456789/17936
dc.description Treballs Finals de Grau de Matemàtiques, Facultat de Matemàtiques, Universitat de Barcelona, Any: 2017, Director: Núria Vila i Oliva
dc.description Given a field $k$ and a finite group $G$, is there a Galois field extension $K|k$ such that its Galois group is isomorphic to $G$? Such an innocent question and yet it remains unsolved: this is what is known as the Inverse Galois Problem. In the present Bachelor thesis we show that this question has a positive answer if the field is $\mathbb{Q}$ and the group is either $S_n$ or $A_n$, following the strategy devised by David Hilbert in his paper Über die Irreduzibilität ganzer rationaler Funktionen mit ganzzahligen Koeffizienten (1892). We start with two basic examples and an exposition of relevant results from algebraic number theory, and then move on to proving Hilbert’s Irreducibility Theorem. As a consequence, we prove that the symmetric group $S_n$ and the alternating group $A_n$ are realisable as Galois groups over the field of rational numbers $\mathbb{Q}$.
dc.format 39 p.
dc.format application/pdf
dc.language eng
dc.rights cc-by-nc-nd (c) Mireia Martı́nez i Sellarès, 2017
dc.rights http://creativecommons.org/licenses/by-nc-nd/3.0/es
dc.rights info:eu-repo/semantics/openAccess
dc.source Treballs Finals de Grau (TFG) - Matemàtiques
dc.subject Teoria de Galois
dc.subject Treballs de fi de grau
dc.subject Grups simètrics
dc.subject Extensions de cossos (Matemàtica)
dc.subject Galois theory
dc.subject Bachelor's theses
dc.subject Symmetric groups
dc.subject Field extensions (Mathematics)
dc.title Realising $S_n$ and $A_n$ as Galois groups Over $\mathbb{Q}$ : an introduction to the inverse Galois problem
dc.type info:eu-repo/semantics/bachelorThesis


Files in this item

Files Size Format View

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record

Search DSpace


Advanced Search

Browse

My Account