Repositori DSpace/Manakin

Teoria de diferenciació d’integrals

Mostra el registre parcial de l'element

dc.contributor Soria de Diego, F. Javier
dc.creator Martínez Bernadàs, Joan
dc.date 2017-06-29T08:16:14Z
dc.date 2017-06-29T08:16:14Z
dc.date 2017-01-17
dc.date.accessioned 2024-12-16T10:24:34Z
dc.date.available 2024-12-16T10:24:34Z
dc.identifier http://hdl.handle.net/2445/113069
dc.identifier.uri http://fima-docencia.ub.edu:8080/xmlui/handle/123456789/17926
dc.description Treballs Finals de Grau de Matemàtiques, Facultat de Matemàtiques, Universitat de Barcelona, Any: 2017, Director: F. Javier Soria de Diego
dc.description The theory of differentiation of integrals comes from the widely known theorem of Lebesgue. One could think that taking on this theorem euclidean balls instead of other type of sets might well be irrelevant. But it’s not true. It became a difficult problem to find out whether the replacement of euclidean balls by other type of sets in the Lebesgue theorem would lead to a true statement or not. The aime of this work is to present the theory of differentiation of integrals as an interaction between covering properties of families of sets in R n , estimations for an adequate extension of the maximal operator of Hardy and Littlewood and differentiation properties. First chapter is devoted to the main covering theorems that are used in the subject. The second one introduces the notions of a differentiation basis and the maximal operator associated to it. Third chapter hows how closely related are the properties of the maximal operator and the differentiation properties of a basis. Finally, in the fourth chapter we solve some classical problems: the Perron tree, the Kakeya problem and the Nikodym set.
dc.format 57 p.
dc.format application/pdf
dc.language cat
dc.rights cc-by-nc-nd (c) Joan Martı́nez Bernadàs, 2017
dc.rights http://creativecommons.org/licenses/by-nc-nd/3.0/es
dc.rights info:eu-repo/semantics/openAccess
dc.source Treballs Finals de Grau (TFG) - Matemàtiques
dc.subject Integrals
dc.subject Treballs de fi de grau
dc.subject Operadors integrals
dc.subject Funcions de variables reals
dc.subject Integrals
dc.subject Bachelor's theses
dc.subject Integral operators
dc.subject Functions of real variables
dc.title Teoria de diferenciació d’integrals
dc.type info:eu-repo/semantics/bachelorThesis


Fitxers en aquest element

Fitxers Grandària Format Visualització

No hi ha fitxers associats a aquest element.

Aquest element apareix en la col·lecció o col·leccions següent(s)

Mostra el registre parcial de l'element

Cerca a DSpace


Cerca avançada

Visualitza

El meu compte