Mostrar el registro sencillo del ítem
dc.contributor | Naranjo del Val, Juan Carlos | |
dc.creator | Torres Serra, Miquel | |
dc.date | 2017-05-05T08:41:06Z | |
dc.date | 2017-05-05T08:41:06Z | |
dc.date | 2016-06-27 | |
dc.date.accessioned | 2024-12-16T10:24:19Z | |
dc.date.available | 2024-12-16T10:24:19Z | |
dc.identifier | http://hdl.handle.net/2445/110487 | |
dc.identifier.uri | http://fima-docencia.ub.edu:8080/xmlui/handle/123456789/17462 | |
dc.description | Treballs Finals de Grau de Matemàtiques, Facultat de Matemàtiques, Universitat de Barcelona, Any: 2016, Director: Juan Carlos Naranjo del Val | |
dc.description | The kissing number problem is a classic problem related to the Kepler conjecture and which was already the subject of discussion between David Gregory and Isaac Newton. The problem asks for the value of $κ(n)$, which is the maximal number of equal radius and nonoverlapping spheres in n-dimensional space that can touch a fixed sphere of the same radius? The answer is known for n = 1, 2, 3, 4, 8, 24, in this work we will study the proof of Oleg R. Musin in the three dimensional case and discuss his strategy in the four dimensional one. | |
dc.format | 51 p. | |
dc.format | application/pdf | |
dc.language | cat | |
dc.rights | cc-by-nc-nd (c) Miquel Torres Serra, 2016 | |
dc.rights | http://creativecommons.org/licenses/by-nc-nd/3.0/es | |
dc.rights | info:eu-repo/semantics/openAccess | |
dc.source | Treballs Finals de Grau (TFG) - Matemàtiques | |
dc.subject | Esfera | |
dc.subject | Treballs de fi de grau | |
dc.subject | Trigonometria esfèrica | |
dc.subject | Varietats topològiques de dimensió 3 | |
dc.subject | Varietats topològiques de dimensió 4 | |
dc.subject | Sphere | |
dc.subject | Bachelor's theses | |
dc.subject | Spherical trigonometry | |
dc.subject | Three-manifolds (Topology) | |
dc.subject | Four-manifolds (Topology) | |
dc.title | Kissing number | |
dc.type | info:eu-repo/semantics/bachelorThesis |
Ficheros | Tamaño | Formato | Ver |
---|---|---|---|
No hay ficheros asociados a este ítem. |