Treballs Finals de Grau de Matemàtiques, Facultat de Matemàtiques, Universitat de Barcelona, Any: 2016, Director: Juan Carlos Naranjo del Val
The kissing number problem is a classic problem related to the Kepler conjecture and which was already the subject of discussion between David Gregory and Isaac Newton. The problem asks for the value of $κ(n)$, which is the maximal number of equal radius and nonoverlapping spheres in n-dimensional space that can touch a fixed sphere of the same radius?
The answer is known for n = 1, 2, 3, 4, 8, 24, in this work we will study the proof of Oleg R. Musin in the three dimensional case and discuss his strategy in the four dimensional one.