dc.contributor |
Naranjo del Val, Juan Carlos |
|
dc.creator |
Torres Serra, Miquel |
|
dc.date |
2017-05-05T08:41:06Z |
|
dc.date |
2017-05-05T08:41:06Z |
|
dc.date |
2016-06-27 |
|
dc.date.accessioned |
2024-12-16T10:24:19Z |
|
dc.date.available |
2024-12-16T10:24:19Z |
|
dc.identifier |
http://hdl.handle.net/2445/110487 |
|
dc.identifier.uri |
http://fima-docencia.ub.edu:8080/xmlui/handle/123456789/17462 |
|
dc.description |
Treballs Finals de Grau de Matemàtiques, Facultat de Matemàtiques, Universitat de Barcelona, Any: 2016, Director: Juan Carlos Naranjo del Val |
|
dc.description |
The kissing number problem is a classic problem related to the Kepler conjecture and which was already the subject of discussion between David Gregory and Isaac Newton. The problem asks for the value of $κ(n)$, which is the maximal number of equal radius and nonoverlapping spheres in n-dimensional space that can touch a fixed sphere of the same radius?
The answer is known for n = 1, 2, 3, 4, 8, 24, in this work we will study the proof of Oleg R. Musin in the three dimensional case and discuss his strategy in the four dimensional one. |
|
dc.format |
51 p. |
|
dc.format |
application/pdf |
|
dc.language |
cat |
|
dc.rights |
cc-by-nc-nd (c) Miquel Torres Serra, 2016 |
|
dc.rights |
http://creativecommons.org/licenses/by-nc-nd/3.0/es |
|
dc.rights |
info:eu-repo/semantics/openAccess |
|
dc.source |
Treballs Finals de Grau (TFG) - Matemàtiques |
|
dc.subject |
Esfera |
|
dc.subject |
Treballs de fi de grau |
|
dc.subject |
Trigonometria esfèrica |
|
dc.subject |
Varietats topològiques de dimensió 3 |
|
dc.subject |
Varietats topològiques de dimensió 4 |
|
dc.subject |
Sphere |
|
dc.subject |
Bachelor's theses |
|
dc.subject |
Spherical trigonometry |
|
dc.subject |
Three-manifolds (Topology) |
|
dc.subject |
Four-manifolds (Topology) |
|
dc.title |
Kissing number |
|
dc.type |
info:eu-repo/semantics/bachelorThesis |
|