Show simple item record

dc.contributor Naranjo del Val, Juan Carlos
dc.creator Torres Serra, Miquel
dc.date 2017-05-05T08:41:06Z
dc.date 2017-05-05T08:41:06Z
dc.date 2016-06-27
dc.date.accessioned 2024-12-16T10:24:19Z
dc.date.available 2024-12-16T10:24:19Z
dc.identifier http://hdl.handle.net/2445/110487
dc.identifier.uri http://fima-docencia.ub.edu:8080/xmlui/handle/123456789/17462
dc.description Treballs Finals de Grau de Matemàtiques, Facultat de Matemàtiques, Universitat de Barcelona, Any: 2016, Director: Juan Carlos Naranjo del Val
dc.description The kissing number problem is a classic problem related to the Kepler conjecture and which was already the subject of discussion between David Gregory and Isaac Newton. The problem asks for the value of $κ(n)$, which is the maximal number of equal radius and nonoverlapping spheres in n-dimensional space that can touch a fixed sphere of the same radius? The answer is known for n = 1, 2, 3, 4, 8, 24, in this work we will study the proof of Oleg R. Musin in the three dimensional case and discuss his strategy in the four dimensional one.
dc.format 51 p.
dc.format application/pdf
dc.language cat
dc.rights cc-by-nc-nd (c) Miquel Torres Serra, 2016
dc.rights http://creativecommons.org/licenses/by-nc-nd/3.0/es
dc.rights info:eu-repo/semantics/openAccess
dc.source Treballs Finals de Grau (TFG) - Matemàtiques
dc.subject Esfera
dc.subject Treballs de fi de grau
dc.subject Trigonometria esfèrica
dc.subject Varietats topològiques de dimensió 3
dc.subject Varietats topològiques de dimensió 4
dc.subject Sphere
dc.subject Bachelor's theses
dc.subject Spherical trigonometry
dc.subject Three-manifolds (Topology)
dc.subject Four-manifolds (Topology)
dc.title Kissing number
dc.type info:eu-repo/semantics/bachelorThesis


Files in this item

Files Size Format View

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record

Search DSpace


Advanced Search

Browse

My Account