Repositori DSpace/Manakin

Parameterization of invariant manifolds : the Lorenz manifold

Mostra el registre parcial de l'element

dc.contributor Haro, Àlex
dc.creator Roma Gimeno, Irene
dc.date 2017-05-02T11:22:57Z
dc.date 2017-05-02T11:22:57Z
dc.date 2016-06-23
dc.date.accessioned 2024-12-16T10:24:18Z
dc.date.available 2024-12-16T10:24:18Z
dc.identifier http://hdl.handle.net/2445/110322
dc.identifier.uri http://fima-docencia.ub.edu:8080/xmlui/handle/123456789/17420
dc.description Treballs Finals de Grau de Matemàtiques, Facultat de Matemàtiques, Universitat de Barcelona, Any: 2016, Director: Àlex Haro
dc.description This work is composed of three different parts. First of all, a deep study of the Lorenz equations is done, beginning with its physical deduction, continuing with its dynamical properties and ending with the discussion of three typical properties of chaotic attractors (Volume contraction, Local instability and global stability and how they are illustrated by the Lorenz system. The second part is based on Taylor’s method as a numerical integration method for the Lorenz differential equation system. The order of the expansion and the step size are the parameters to determine in order to have an error below a certain tolerance and a high computational efficiency. The last part is the one which gives the title to this project. Once we have a deep understanding of the dynamical system and a way to integrate it we can proceed to find an approximation for the invariant stable manifold using the parameterization method. A general theorem for the analytic case is first introduced and then the method is adapted to the Lorenz model, and hence obtaining a plot of this manifold.
dc.format 38 p.
dc.format application/pdf
dc.language eng
dc.rights cc-by-nc-nd (c) Irene Roma Gimeno, 2016
dc.rights http://creativecommons.org/licenses/by-nc-nd/3.0/es
dc.rights info:eu-repo/semantics/openAccess
dc.source Treballs Finals de Grau (TFG) - Matemàtiques
dc.subject Equacions diferencials ordinàries
dc.subject Caos (Teoria de sistemes)
dc.subject Anàlisi numèrica
dc.subject Varietats (Matemàtica)
dc.subject Sistemes dinàmics diferenciables
dc.subject Treballs de fi de grau
dc.subject Ordinary differential equations
dc.subject Chaotic behavior in systems
dc.subject Numerical analysis
dc.subject Manifolds (Mathematics)
dc.subject Differentiable dynamical systems
dc.subject Bachelor's theses
dc.title Parameterization of invariant manifolds : the Lorenz manifold
dc.type info:eu-repo/semantics/bachelorThesis


Fitxers en aquest element

Fitxers Grandària Format Visualització

No hi ha fitxers associats a aquest element.

Aquest element apareix en la col·lecció o col·leccions següent(s)

Mostra el registre parcial de l'element

Cerca a DSpace


Cerca avançada

Visualitza

El meu compte