Mostrar el registro sencillo del ítem

dc.contributor Fortiana Gregori, Josep
dc.creator Huang, Wei
dc.date 2017-04-11T10:56:51Z
dc.date 2017-04-11T10:56:51Z
dc.date 2016-06-27
dc.date.accessioned 2024-12-16T10:24:05Z
dc.date.available 2024-12-16T10:24:05Z
dc.identifier http://hdl.handle.net/2445/109620
dc.identifier.uri http://fima-docencia.ub.edu:8080/xmlui/handle/123456789/17086
dc.description Treballs Finals de Grau de Matemàtiques, Facultat de Matemàtiques, Universitat de Barcelona, Any: 2016, Director: Josep Fortiana Gregori
dc.description This work is about Benford’s Law (also know as first digit law) that asserts that, in some situations, the fraction of numbers that start with the digit $d$ is not the intuitively –and yet reasonable– 1/9 but the remarkable log $_{10} (1 + d ^{−1} )$. We also study, in a generalized way, the behaviour of the others digits and we will see how certains sequences (Fibonacci’s numbers, powers, etc) follows almost perfectly the values predicted by the law. Finally we will discuss daily situations that also follows the Benford’s Law (lists populations, payments, etc).
dc.format 55 p.
dc.format application/pdf
dc.language cat
dc.rights cc-by-nc-nd (c) Wei Huang, 2016
dc.rights http://creativecommons.org/licenses/by-nc-nd/3.0/es
dc.rights info:eu-repo/semantics/openAccess
dc.source Treballs Finals de Grau (TFG) - Matemàtiques
dc.subject Distribució (Teoria de la probabilitat)
dc.subject Treballs de fi de grau
dc.subject Nombres
dc.subject Censos
dc.subject Frau
dc.subject Distribution (Probability theory)
dc.subject Numerals
dc.subject Census
dc.subject Fraud
dc.subject Bachelor's theses
dc.title Llei de Benford
dc.type info:eu-repo/semantics/bachelorThesis


Ficheros en el ítem

Ficheros Tamaño Formato Ver

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Buscar en DSpace


Búsqueda avanzada

Listar

Mi cuenta