dc.contributor |
Fortiana Gregori, Josep |
|
dc.creator |
Huang, Wei |
|
dc.date |
2017-04-11T10:56:51Z |
|
dc.date |
2017-04-11T10:56:51Z |
|
dc.date |
2016-06-27 |
|
dc.date.accessioned |
2024-12-16T10:24:05Z |
|
dc.date.available |
2024-12-16T10:24:05Z |
|
dc.identifier |
http://hdl.handle.net/2445/109620 |
|
dc.identifier.uri |
http://fima-docencia.ub.edu:8080/xmlui/handle/123456789/17086 |
|
dc.description |
Treballs Finals de Grau de Matemàtiques, Facultat de Matemàtiques, Universitat de Barcelona, Any: 2016, Director: Josep Fortiana Gregori |
|
dc.description |
This work is about Benford’s Law (also know as first digit law) that asserts that, in some situations, the fraction of numbers that start with the digit $d$ is not the intuitively –and yet reasonable– 1/9 but the remarkable log $_{10} (1 + d ^{−1} )$. We also study, in a generalized way, the behaviour of the others digits and we will see how certains sequences (Fibonacci’s numbers, powers, etc) follows almost perfectly the values predicted by the law. Finally we will discuss daily situations that also follows the Benford’s Law (lists populations, payments, etc). |
|
dc.format |
55 p. |
|
dc.format |
application/pdf |
|
dc.language |
cat |
|
dc.rights |
cc-by-nc-nd (c) Wei Huang, 2016 |
|
dc.rights |
http://creativecommons.org/licenses/by-nc-nd/3.0/es |
|
dc.rights |
info:eu-repo/semantics/openAccess |
|
dc.source |
Treballs Finals de Grau (TFG) - Matemàtiques |
|
dc.subject |
Distribució (Teoria de la probabilitat) |
|
dc.subject |
Treballs de fi de grau |
|
dc.subject |
Nombres |
|
dc.subject |
Censos |
|
dc.subject |
Frau |
|
dc.subject |
Distribution (Probability theory) |
|
dc.subject |
Numerals |
|
dc.subject |
Census |
|
dc.subject |
Fraud |
|
dc.subject |
Bachelor's theses |
|
dc.title |
Llei de Benford |
|
dc.type |
info:eu-repo/semantics/bachelorThesis |
|