Màster en Biofísica, curs 2006-2007
Chemical coupling between neurons is only active when the presynaptic neuron is firing, and thus it does not allow for the propagation of subthreshold activity. Electrical coupling via gap junctions, on the other hand, is also ubiquitous and, due to its diffusive nature, transmits both subthreshold and suprathreshold activity between neurons. We study theoretically the propagation of spikes between two neurons that exhibit subthreshold oscillations, and which are coupled via both chemical synapses and gap junctions. Due to the electrical coupling, the periodic subthreshold activity is synchronized in the two neurons, and affects propagation of spikes in such a way that for certain values of the delay in the synaptic coupling, propagation is not possible. This effect could provide a mechanism for the modulation of information transmission in neuronal networks.