Repositorio Dspace

Schottky groups in valuation rings

Mostrar el registro sencillo del ítem

dc.contributor Xarles Ribas, Francesc Xavier
dc.contributor Vila, Núria (Vila i Oliva)
dc.creator Samaniego Vidal, Daniel
dc.date 2017-03-07T12:54:33Z
dc.date 2017-03-07T12:54:33Z
dc.date 2016-06-28
dc.date.accessioned 2024-12-16T10:23:54Z
dc.date.available 2024-12-16T10:23:54Z
dc.identifier http://hdl.handle.net/2445/108024
dc.identifier.uri http://fima-docencia.ub.edu:8080/xmlui/handle/123456789/16764
dc.description Treballs finals del Màster en Matemàtica Avançada, Facultat de matemàtiques, Universitat de Barcelona, Any: 2016, Director: Francesc Xavier Xarles Ribas i Núria Vila i Oliva
dc.description Given a complete field $K$, and a valuation over $K$, we can construct a "tree of balls", where the vertex are the open balls obtained from a subset $\mathcal{L}$ of $\mathbb{P}^{1}(K)$ seen as a topological space, and the edges are obtained from the paths between elements of the subset of $\mathbb{P}^{1}(K)$. In order to define the open balls we need to give a topology. It comes from our valuation and gives the property that or two balls does not intersect or one is contained in the other. Moreover given a Schottky group $\Gamma$ acting on the tree of balls we will see that we obtain a finite tree. In order to see that we will see first that this tree of balls of a subset $\mathcal{L}$ of $\mathbb{P}^{1}(K)$ is locally finite. We will see that the subset $\mathcal{L}$ has to be compact in order to guarantee the finiteness of the resultant tree. Other result will consist on see that the closure of the limit points of a Schottky group, $\mathcal{L}_{\Gamma}$, is equal to the closure of the orbit of some point, which by definition of Schottky group will guarantee that this set is compact so we will be able to apply the previous theory. In order to define a Schottky group we will consider that it has to be topologically nilpotent in order to extend the non-Archimedian results to any totally ordered group as a image of our valuation. We also will see a characterisation of hyperbolic matrices and we will consider some example of the graph $\mathcal{L}_{\Gamma}/\Gamma$.
dc.format 40 p.
dc.format application/pdf
dc.language eng
dc.rights cc-by-nc-nd (c) Daniel Samaniego Vidal, 2016
dc.rights http://creativecommons.org/licenses/by-nc-nd/3.0/es/
dc.rights info:eu-repo/semantics/openAccess
dc.source Màster Oficial - Matemàtica Avançada
dc.subject Grups discontinus
dc.subject Formes automòrfiques
dc.subject Treballs de fi de màster
dc.subject Cossos topològics
dc.subject Àlgebra commutativa
dc.subject Discontinuous groups
dc.subject Automorphic forms
dc.subject Master's theses
dc.subject Topological fields
dc.subject Commutative algebra
dc.title Schottky groups in valuation rings
dc.type info:eu-repo/semantics/masterThesis


Ficheros en el ítem

Ficheros Tamaño Formato Ver

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Buscar en DSpace


Búsqueda avanzada

Listar

Mi cuenta