Repositori DSpace/Manakin

Wandering domains and entire maps of bounded type

Mostra el registre parcial de l'element

dc.contributor Jarque i Ribera, Xavier
dc.creator Malešević Bubenik, Ana
dc.date 2017-02-23T11:56:55Z
dc.date 2017-02-23T11:56:55Z
dc.date 2016-06-28
dc.date.accessioned 2024-12-16T10:23:51Z
dc.date.available 2024-12-16T10:23:51Z
dc.identifier http://hdl.handle.net/2445/107307
dc.identifier.uri http://fima-docencia.ub.edu:8080/xmlui/handle/123456789/16693
dc.description Treballs finals del Màster en Matemàtica Avançada, Facultat de matemàtiques, Universitat de Barcelona, Any: 2016, Director: Xavier Jarque i Ribera
dc.description Complex dynamics is one of the richest and most active branches of dynamical systems. Its goal is to study what happens to analytic functions on the complex plane (or the Riemann sphere) when it is iterated. In this master thesis the focus is on transcendental dynamics since the assumption is that $f:\mathbb{C}\rightarrow \mathbb{C}$ is a transcendental entire function. The foundations of complex dynamics were laid by Pierre Fatou and Gaston Julia in the 1920s when they defined the Fatou and Julia sets, named after them. Roughly speaking, the Fatou set is the stable set since all the points in a neighbourhood have the same behaviour after iteration. Alternatively, the points of the Julia set are those that behave unpredictably after iteration. For that reason the Julia set is also called the chaotic set. Both sets are invariant and give a natural partition of the complex plane. The Fatou set is made up of the complementary domains in $\mathbb{C}$ of the Julia set, the Fatou components. Since it is stable a possible Fatou components. Since it is stable a possible Fatou component $U$ can be either periodic (if $f^p(U)=U$ for some $p \in \mathbb{N})$, pre-periodic (if they are periodic eventually) or wandering (if$f^n(U) \cap f^m(U)=\emptyset$ for $m\neq n$).
dc.format 54 p.
dc.format application/pdf
dc.language eng
dc.rights cc-by-nc-nd (c) Ana Malešević Bubenik, 2016
dc.rights http://creativecommons.org/licenses/by-nc-nd/3.0/es/
dc.rights info:eu-repo/semantics/openAccess
dc.source Màster Oficial - Matemàtica Avançada
dc.subject Sistemes dinàmics complexos
dc.subject Funcions enteres
dc.subject Treballs de fi de màster
dc.subject Complex dynamical systems
dc.subject Entire functions
dc.subject Master's theses
dc.title Wandering domains and entire maps of bounded type
dc.type info:eu-repo/semantics/masterThesis


Fitxers en aquest element

Fitxers Grandària Format Visualització

No hi ha fitxers associats a aquest element.

Aquest element apareix en la col·lecció o col·leccions següent(s)

Mostra el registre parcial de l'element

Cerca a DSpace


Cerca avançada

Visualitza

El meu compte