Repositorio Dspace

Can a CNN recognize mediterranean diet?

Mostrar el registro sencillo del ítem

dc.contributor Radeva, Petia
dc.creator Herruzo Sánchez, Pedro
dc.date 2017-02-22T09:31:04Z
dc.date 2017-02-22T09:31:04Z
dc.date 2016-06-30
dc.date.accessioned 2024-12-16T10:23:51Z
dc.date.available 2024-12-16T10:23:51Z
dc.identifier http://hdl.handle.net/2445/107243
dc.identifier.uri http://fima-docencia.ub.edu:8080/xmlui/handle/123456789/16682
dc.description Treballs Finals de Grau d'Enginyeria Informàtica, Facultat de Matemàtiques, Universitat de Barcelona, Any: 2016, Director: Petia Radeva
dc.description Nowadays, we can find several diseases related with the unhealthy diet habits of the population, such as diabetes, obesity, anemia, bulimia and anorexia. In many cases, it is related with the food consumption of the people. Mediterranean diet is scientifically known as a healthy diet that helps to prevent those and other food problems. In particular, our work focuses on the recognition of Mediterranean food and dishes. It is part of a wider project that analyses the daily habits of users with wearable cameras, within the topic of Lifelogging. It appears as an objective tool for the analysis of the patient’s behavior, allowing specialist to discover patterns and understand user’s lifestyle to find unhealthy food patterns. With the aim to automatic recognize a complete diet, we introduce a challenging multilabeled dataset related to Mediterranean diet called FoodCAT. The first kind of labels contains 115 food classes with an average of 400 images per dish, and the second one is composed by 12 food categories with an average of 3800 pictures per class. This dataset will serve as a basis for the development of automatic diet tracking problems. Deep learning and more specifically Convolutional Neural Networks (CNNs), are actually the technologies with the state-of-the-art recognizing food automatically. In our work, we adapt the best, so far, CNNs architectures for image classification, to our objective into the diet tracking. Recognizing food categories, we achieved the highest accuracies top-1 with 72.29%, and top-5 with 97.07%. In a complete diet tracking recognizing dishes from Mediterranean diet, enlarged with the Food-101 dataset, we achieve the highest accuracies top-1 with 68.07%, and top-5 with 89.53%, for a total of 115+101 food classes.
dc.format 68 p.
dc.format application/pdf
dc.language eng
dc.rights memòria: cc-by-nc-sa (c) Pedro Herruzo Sánchez
dc.rights http://creativecommons.org/licenses/by-sa/3.0/es
dc.rights info:eu-repo/semantics/openAccess
dc.source Treballs Finals de Grau (TFG) - Enginyeria Informàtica
dc.subject Xarxes neuronals (Informàtica)
dc.subject Reconeixement de formes (Informàtica)
dc.subject Programari
dc.subject Treballs de fi de grau
dc.subject Visió per ordinador
dc.subject Cuina mediterrània
dc.subject Aprenentatge automàtic
dc.subject Neural networks (Computer science)
dc.subject Pattern recognition systems
dc.subject Computer software
dc.subject Bachelor's theses
dc.subject Computer vision
dc.subject Mediterranean cooking
dc.subject Machine learning
dc.title Can a CNN recognize mediterranean diet?
dc.type info:eu-repo/semantics/bachelorThesis


Ficheros en el ítem

Ficheros Tamaño Formato Ver

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Buscar en DSpace


Búsqueda avanzada

Listar

Mi cuenta