Repositorio Dspace

Daily activity recognition from egocentric images

Mostrar el registro sencillo del ítem

dc.contributor Dimiccoli, Mariella
dc.creator Marín Vega, Juan
dc.date 2016-11-03T09:34:20Z
dc.date 2016-11-03T09:34:20Z
dc.date 2016-06-29
dc.date.accessioned 2024-12-16T10:23:23Z
dc.date.available 2024-12-16T10:23:23Z
dc.identifier http://hdl.handle.net/2445/103189
dc.identifier.uri http://fima-docencia.ub.edu:8080/xmlui/handle/123456789/15927
dc.description Treballs Finals de Grau d'Enginyeria Informàtica, Facultat de Matemàtiques, Universitat de Barcelona, Any: 2016, Director: Mariella Dimiccoli
dc.description By analysing people way of life we can create methods of prevention and intervention for human behaviour derived diseases. Lifelogging allow us to obtain information, through image capture, of the daily life and the environment in which we move. However, we need to classify those images in order to obtain information, and then to analyse that data to detect behaviour patterns that may be affecting people. But how can we classify thousand of images in a quick way? Automatic classification algorithms, such as convolutional neural networks based techniques and deep learning have shown promising results when classifying images. This work introduces the challenge, first, of realizing a tool for a manual classification, with a website showing images that allow us to easily classify images using batches. Such a tool allows us to create a data set of nearly 20.000 images to, in the second part of the project, realize a fine-tuning over a convolutional neural network trained with ImageNet. After that fine-tuning, the convolutional neural network is combined to obtain the features from the images in order to train a Random Decision Forest classifier. Finally the results are studied. The global accuracy for the CNN system based is that of 58%. A better solution is obtained when combining CNN’s and RDF’s reaching up to 85% of global accuracy. Thus concluding that the classification system based on training a RDF with the data provided by the CNN, image features and probabilities, is the system offering better results.
dc.format 75 p.
dc.format application/pdf
dc.language eng
dc.rights memòria: cc-by-nc-sa (c) Juan Marín Vega, 2016
dc.rights codi: GPL (c) Juan Marín Vega, 2016
dc.rights http://creativecommons.org/licenses/by-sa/3.0/es
dc.rights http://www.gnu.org/licenses/gpl-3.0.ca.html
dc.rights info:eu-repo/semantics/openAccess
dc.source Treballs Finals de Grau (TFG) - Enginyeria Informàtica
dc.subject Aprenentatge automàtic
dc.subject Xarxes neuronals (Informàtica)
dc.subject Programari
dc.subject Treballs de fi de grau
dc.subject Sistemes classificadors (Intel·ligència artificial)
dc.subject Processament digital d'imatges
dc.subject Disseny de pàgines web
dc.subject Machine learning
dc.subject Neural networks (Computer science)
dc.subject Computer software
dc.subject Bachelor's theses
dc.subject Learning classifier systems
dc.subject Digital image processing
dc.subject Web site design
dc.title Daily activity recognition from egocentric images
dc.type info:eu-repo/semantics/bachelorThesis


Ficheros en el ítem

Ficheros Tamaño Formato Ver

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Buscar en DSpace


Búsqueda avanzada

Listar

Mi cuenta