Repositorio Dspace

Insolvency risk: characterisation and prediction

Mostrar el registro sencillo del ítem

dc.contributor Fortiana Gregori, Josep
dc.contributor Marti Pidelaserra, Jordi
dc.creator Xaus Pariente, Adrià
dc.date 2016-05-17T09:47:52Z
dc.date 2016-05-17T09:47:52Z
dc.date 2016-01
dc.date.accessioned 2024-12-16T10:22:28Z
dc.date.available 2024-12-16T10:22:28Z
dc.identifier http://hdl.handle.net/2445/98587
dc.identifier.uri http://fima-docencia.ub.edu:8080/xmlui/handle/123456789/14409
dc.description Treballs Finals de Grau de Matemàtiques, Facultat de Matemàtiques, Universitat de Barcelona, Any: 2016, Director: Josep Fortiana Gregori i Jordi Martí Pidelaserra
dc.description The present document sets out to analyse the concept of insolvency risk in a firm and how it can be objectively measured. Our main objective is to predict whether a firm will face an insolvency situation, based on its most recent historical data stored in its accounts. In order to achieve it, the prediction of insolvency risk is studied reviewing some of the most relevant literature and explaining the accounting and financial implications which lie behind it, understanding the concept of insolvency from this perspective. In mathematical terms, this is an example of the so-called Problem of Classification (or Discriminant Analysis), which is usually approached using Statistics. More specifically, the chosen way to mathematically measure insolvency risk is through some of the most popular statistical prediction methods which deal with this problem. Some of these methods consist of the classical Altman’s Z Score, essentially equivalent to the Linear Discriminant, or more contemporary methods like Classification and Regression Trees or Neural Networks. These methods are applied on two samples. The first one is a sample of 40 Spanish firms selected under some certain criteria, gathering its data from SABI database (Sistema de Análisis de Balances Ibéricos). The second one is the sample that Professor E. I. Altman used in his famous 1968 article, where he introduced its aforementioned Z Score. A balanced approach between financial theory and statistical theory is used in order to effectively convey the message that we cannot totally rely on the statistical methods without taking into account the non-mathematical implications, for this is a complex issue involving many other areas such as finance, accounting or economics.
dc.format 72 p.
dc.format application/pdf
dc.language eng
dc.rights cc-by-nc-nd (c) Adrià Xaus Pariente, 2016
dc.rights http://creativecommons.org/licenses/by-nc-nd/3.0/es
dc.rights info:eu-repo/semantics/openAccess
dc.source Treballs Finals de Grau (TFG) - Matemàtiques
dc.subject Avaluació del risc
dc.subject Fallida
dc.subject Anàlisi multivariable
dc.subject Anàlisi de regressió
dc.subject Xarxes neuronals (Informàtica)
dc.subject Treballs de fi de grau
dc.subject Risk assessment
dc.subject Bankruptcy
dc.subject Multivariate analysis
dc.subject Regression analysis
dc.subject Neural networks (Computer science)
dc.subject Bachelor's theses
dc.title Insolvency risk: characterisation and prediction
dc.type info:eu-repo/semantics/bachelorThesis


Ficheros en el ítem

Ficheros Tamaño Formato Ver

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Buscar en DSpace


Búsqueda avanzada

Listar

Mi cuenta