Mostra el registre parcial de l'element

dc.contributor Igual Muñoz, Laura
dc.creator Nadal Zaragoza, Laia
dc.date 2016-04-14T10:59:11Z
dc.date 2016-04-14T10:59:11Z
dc.date 2016-01-28
dc.date.accessioned 2024-12-16T10:22:21Z
dc.date.available 2024-12-16T10:22:21Z
dc.identifier http://hdl.handle.net/2445/97406
dc.identifier.uri http://fima-docencia.ub.edu:8080/xmlui/handle/123456789/14215
dc.description Treballs Finals de Grau d'Enginyeria Informàtica, Facultat de Matemàtiques, Universitat de Barcelona, Any: 2016, Director: Laura Igual Muñoz
dc.description The main process causing most cardiovascular diseases is atherosclerosis, which is responsible for the thickening of the major arteries walls. Concretely, the intimamedia thickness (IMT) of the carotid artery wall is an early and effective marker of atherosclerosis progression. The measurement of the IMT is directly extracted from the segmentation of two different layers of the carotid artery wall. In this project, we present three fully automated techniques to perform the segmentation of these two layers of the carotid artery wall using B-mode ultrasound images. The segmentation of the carotid artery wall is a challenging problem due to image noise, artefacts and image shape, intensity and resolution variability. One of the developed methods is based on lumen detection. It first detects the lumen region of the carotid artery and then it seeks the both layers using the differences between the intensity values of the image. The other two methods are based on a classification system, considering the image segmentation problem as a classification problem of the image pixels into interior or exterior of the region formed by the two layers. One of them uses the random forest classifier and the other one uses the stacked sequential learning scheme with random forest as a base learner. We validate the proposed techniques using a data set of B-mode images obtained from a clinical institution and we compare its performances.
dc.format 59 p.
dc.format application/pdf
dc.language eng
dc.rights memòria: cc-by-nc-sa (c) Laia Nadal Zaragoza, 2016
dc.rights codi: GPL (c) Laia Nadal Zaragoza, 2016
dc.rights http://creativecommons.org/licenses/by-sa/3.0/es
dc.rights http://www.gnu.org/licenses/gpl-3.0.ca.html
dc.rights info:eu-repo/semantics/openAccess
dc.source Treballs Finals de Grau (TFG) - Enginyeria Informàtica
dc.subject Artèries caròtides
dc.subject Arterioesclerosi
dc.subject Programari
dc.subject Treballs de fi de grau
dc.subject Diagnòstic per la imatge
dc.subject Ultrasons en medicina
dc.subject Visió per ordinador
dc.subject Reconeixement de formes (Informàtica)
dc.subject Arteriosclerosis
dc.subject Diagnostic imaging
dc.subject Computer software
dc.subject Bachelor's theses
dc.subject Ultrasonics in medicine
dc.subject Computer vision
dc.subject Pattern recognition systems
dc.subject Carotid artery
dc.title Carotid artery image segmentation
dc.type info:eu-repo/semantics/bachelorThesis


Fitxers en aquest element

Fitxers Grandària Format Visualització

No hi ha fitxers associats a aquest element.

Aquest element apareix en la col·lecció o col·leccions següent(s)

Mostra el registre parcial de l'element

Cerca a DSpace


Cerca avançada

Visualitza

El meu compte