Repositori DSpace/Manakin

Millora dels processos a través de recomanació d’algorismes d'experience-based

Mostra el registre parcial de l'element

dc.contributor Salamó Llorente, Maria
dc.creator Bosch Florit, Francesc
dc.date 2016-04-06T10:46:07Z
dc.date 2016-04-06T10:46:07Z
dc.date 2016-01-28
dc.date.accessioned 2024-12-16T10:22:20Z
dc.date.available 2024-12-16T10:22:20Z
dc.identifier http://hdl.handle.net/2445/97027
dc.identifier.uri http://fima-docencia.ub.edu:8080/xmlui/handle/123456789/14185
dc.description Treballs Finals de Grau d'Enginyeria Informàtica, Facultat de Matemàtiques, Universitat de Barcelona, Any: 2016, Director: Maria Salamó Llorente
dc.description With the recent increase in Internet use (among other data sources) there is a corresponding growth of the total information available to users. An important problem associated to this overload problem is that it is becoming more and more difficult for users to locate specific pieces of information. Therefore it is necessary to have some kind of help to guide users in finding exactly what they seek among this large volume of information. Recommender systems manage large volumes of data and information to support users in the search for relevant and specific search outcomes. There are many types of recommender systems, which can be broadly classified into two main categories, each used for a different purpose. These are content-based and collaborative filtering recommender systems. This project focuses on the first group of systems, those based on content. Specifically, we focus on conversational recommender systems concentrating on user critique-based feedback. The main objectives of the project are to develop a study of the different recommender systems; to implement, on the library’s recommendation research group Volume Visualization and Artificial Intelligence (WAI) developed in Java, experinced-based algorithms such as History-Aware Critiquing (HAC), Experience-based Critiquing (EBC) and Graph-based algorithms; and to perform a comparative analysis of every approach implemented in order to evaluate the improvement over the standard critiquing algorithms (IC and Std). The results obtained form this comparison show that experience-based algorithms performance is the best within current recommendation algorithms and they have remarkably improved upon the standard critiquing-based approaches.
dc.format 63 p.
dc.format application/pdf
dc.language cat
dc.rights memòria: cc-by-sa (c) Francesc Bosch Florit, 2016
dc.rights http://creativecommons.org/licenses/by-sa/3.0/es
dc.rights info:eu-repo/semantics/openAccess
dc.source Treballs Finals de Grau (TFG) - Enginyeria Informàtica
dc.subject Sistemes d'ajuda a la decisió
dc.subject Algorismes computacionals
dc.subject Programari
dc.subject Treballs de fi de grau
dc.subject Intel·ligència artificial
dc.subject Decision support systems
dc.subject Computer algorithms
dc.subject Computer software
dc.subject Bachelor's theses
dc.subject Artificial intelligence
dc.title Millora dels processos a través de recomanació d’algorismes d'experience-based
dc.type info:eu-repo/semantics/bachelorThesis


Fitxers en aquest element

Fitxers Grandària Format Visualització

No hi ha fitxers associats a aquest element.

Aquest element apareix en la col·lecció o col·leccions següent(s)

Mostra el registre parcial de l'element

Cerca a DSpace


Cerca avançada

Visualitza

El meu compte